
COPPER CASTING ALLOYS

COPPER CASTING ALLOYS

	PREFACE		4
		FIGURES P-1 to P-4. Typical Copper Casting Applications	
UNDE	RSTANDI	NG COPPER CASTING ALLOYS	
	l.	CLASSIFYING THE COPPER ALLOYS	7
		Common Classification Systems	
		The UNS Numbering System	7
		The Copper Metal Families: Classification and Major Uses	
		Metallurgy and Foundry Characteristics	
		Effects of Lead	
	TABLES:	Alloy Characteristics	
		TABLE 1. Standard Temper Designations for Copper Casting Alloys	8
		TABLE 2. Overview of Copper Casting Alloys	12
		TABLE 3. Typical Mechanical Properties of Copper Casting Alloys	26
		TABLE 4. Physical Properties of Copper Casting Alloys	42
		TABLE 5. Conforming Specifications for Copper Casting Alloys	47
	FIGURES:	FIGURES I-1 to I-3. Representative Copper Alloy Castings	25
		FIGURES I-4 to I-10. Representative Copper Alloy Castings	52,53
SELEC	TING CO	PPER CASTING ALLOYS	
	II.	SELECTING COPPER ALLOYS FOR CORROSION RESISTANCE	
		Forms of Corrosion in Copper Alloys	55
		Selecting Alloys for Corrosive Environments	57
	TABLE:	TABLE 6. Velocity Guidelines for Copper Alloys in Pumps and Propellers in Seawater	61
	FIGURES:	FIGURES II-1, II-2. Decreasing corrosion rate over time of Cu-Ni in Seawater	61
		FIGURE II-3. Galvanic Series Chart	62
	Ш.	SELECTING COPPER ALLOYS FOR MECHANICAL PROPERTIES	63
		Strength	
		Strength and Temperature	
		Friction and Wear	
		Fatigue Strength	

FIGURES: FIGURES III-1 to III-7. Effect of Temperature on Various Mechanical Properties

Non-Ferrous Founders' Society 455 State Street • Des Plaines, IL 60016 Copper Development Association 260 Madison Avenue • New York, NY 10016

TABLE OF CONTENTS\continued

IV.	SELECTING COPPER ALLOYS FOR PHYSICAL PROPERTIES	69
	Electrical Conductivity	69
	Thermal Conductivity	
FIGURES:	FIGURES IV-1, IV-2. Temperature dependence of electrical and thermal conductivity for selected	
	copper casting alloys	70
V.	SELECTING COPPER ALLOYS FOR FABRICABILITY	71
	Machinability	71
	Weldability	71
	Brazing, Soldering	72
TABLES:	Alloy Selection Criteria	
	TABLE 7. Corrosion Ratings of Copper Casting Alloys in Various Media	73
	TABLE 8. Copper Casting Alloys Ranked by Typical Tensile Strength	76
	TABLE 9. Copper Casting Alloys Ranked by Typical Yield Strength	78
	TABLE 10. Copper Casting Alloys Ranked by Compressive Strength	80
	TABLE 11. Impact Properties of Copper Casting Alloys at Various Temperatures	81
	TABLE 12. Creep Strengths of Selected Sand-Cast Copper Alloys	82
	TABLE 13. Stress-Rupture Properties of Selected Copper Casting Alloys	83
	TABLE 14. Common Bronze Bearing Alloys	84
	TABLE 15. Fatigue Properties of Selected Copper Casting Alloys	85
	TABLE 16. Copper Casting Alloys Ranked by Electrical Conductivity	86
	TABLE 17. Copper Casting Alloys Ranked by Thermal Conductivity	87
	TABLE 18. Copper Casting Alloys Ranked by Machinability Rating	88
	TABLE 19. Joining Characteristics of Selected Copper Casting Alloys	89
	TABLE 20. Technical Factors in the Choice of Casting Method for Copper Alloys	91
FIGURES:	FIGURES V-1, V-2. Examples of Welded Cast Structures	70

WORKING WITH COPPER CASTING ALLOYS

VI.	CASTING PROCESSES	93
	Processes for General Shapes	
	Processes for Specific Shapes	96
	Special Casting Processes	96
	Selecting a Casting Process	97

FIGURES:	FIGURES VI-1a,b. Sand Casting	
	FIGURES VI-2a,b. Shell Molding	
	FIGURES VI-3a,b. Investment Casting	100,101
	FIGURES VI-4a,b,c. Permanent Mold	
	FIGURES VI-5a,b. Die Casting	102
	FIGURES VI-6a,b. Continuous Casting	103
	FIGURES VI-7a,b,c. Centrifugal Casting	
VII.	CASTING DESIGN PRINCIPLES	
	Design Fundamentals	104
FIGURES:	FIGURES VII-1 to VII-4. Casting Design Considerations	106,107

SPECIFYING AND BUYING COPPER CASTING ALLOYS

VIII.	ORDERING A COPPER ALLOY CASTING
	Sample Purchase Order for a Sand Casting
	REFERENCES

Published 1994 by Copper Development Association Inc., 260 Madison Avenue, New York, NY 10016

PHOTOGRAPHY ACKNOWLEDGMENTS

We wish to thank the following for providing photography or the items used for photography in this publication.

Ampco Metal, Inc. Brush Wellman Birkett Canadian Copper & Brass Development Association Hayward Tyler Fluid Dynamics Ltd. J.W. Singer & Sons, Ltd. Southern Centrifugal Square D Company Stone Manganese Marine Westley Brothers Wisconsin Centrifugal

This Handbook has been prepared for the use of engineers, designers and purchasing managers involved in the selection, design or machining of copper rod alloys. It has been compiled from information supplied by testing, research, manufacturing, standards, and consulting organizations that Copper Development Association Inc. believes to be competent sources for such data. However, CDA assumes no responsibility or liability of any kind in connection with the Handbook or its use by any person or organization and makes no representations or warranties of any kind thereby.

PREFACE

This guide was prepared for individuals who select, specify and buy materials for cast copper alloy products. Its purpose is to help engineers, designers and purchasing agents understand copper alloys so they can choose the most suitable and most economical material to meet their product's requirements.

There have been several excellent texts on copper casting alloys published in recent years,1.2 but these were written more for the foundry operator than for designers, engineers and purchasing agents. The collections of technical data on cast copper alloys that were published in the 1960s,3 1970s4 and as recently as 19905 are either out of print or have not been widely distributed. As a result, few individuals are fully aware of all the technical, economic and practical advantages that the large family of copper alloys has to offer. The present guide, written specifically for the design community, was prepared to fill this information gap.

Why Specify Cast Copper Alloys?

Cast copper alloys have an extremely broad range of application. They are used in virtually every industrial market category, from ordinary plumbing goods to precision electronic components and state-of-the-art marine and nuclear equipment. Their favorable properties are often available in useful combinations. This is particularly valuable when, as is usually the case, a product must satisfy several requirements simultaneously.

The following properties are the reasons cast copper alloys are most often selected:

• Excellent Corrosion Resistance. The ability to withstand corrosive environments is the cast copper alloys' most important and bestknown characteristic. The alloys have a natural corrosion resistance, making durability without maintenance an important element of their long-term cost-effectiveness.

Not surprisingly, water handling equipment of one form or another constitutes the cast alloys' largest single market. Copper alloy castings are also widely used to handle corrosive industrial and process chemicals, and they are well known in the food, beverage and dairy industries. **Figure P-1** shows several aluminum bronze pickling hooks used to immerse coils of steel wire in hot, dilute sulfuric acid.

 Favorable Mechanical Properties. Pure copper is soft and ductile, and it is understandably used more often for its high conductivity than for its mechanical strength. Some cast copper alloys, on the other hand, have strengths that rival quenched and tempered steels.

Almost all copper alloys retain their mechanical properties, including impact toughness, at very low temperatures. Other alloys are used routinely at temperatures as high as 800 F (425 C). No class of engineering materials can match the copper alloys' combination of strength, corrosion resistance and thermal and electrical conductivities over such a broad temperature range.

 Friction and Wear Properties. Cast sleeve bearings are an important application for copper alloys, largely because of their excellent tribological properties. For sleeve bearings, no material of comparable strength can match high leaded bronzes in terms of low wear rates against steel. For worm gears, nickel bronzes and tin bronzes are industry standards.

Equally important, the copper alloys' broad range of mechanical properties enables the designer to match a specific alloy with a bearing's precise operating requirements. Cast sleeve bearings are shown in **Figure P-2**. A comprehensive discussion of copper bearing alloys can be found in the CDA publication, *Cast Bronze Bearings* — Alloy Selection and Bearing Design.

- Biofouling Resistance. Copper effectively inhibits algae, barnacles and other marine organisms from attaching themselves to submerged surfaces. Nonfouling behavior is highest in pure copper and high copper alloys, but it is also strong in the alloys used in marine service. Products such as seawater piping, pumps and valves made from copper alloys therefore remain free from biomass buildup and are able to operate continuously without the periodic cleanup needed with steel, rubber or fiber-reinforced plastic products.
- High Electrical and Thermal Conductivity. Copper's electrical and thermal conductivities are higher than any other metal's except silver. Even copper alloys with relatively low conductivities compared with pure copper conduct heat and electricity far better than other structural metals such as stainless steels and titanium.

Unlike most other metals, the thermal conductivity of many copper casting alloys increases with rising temperature. This can improve the efficiency of copper alloy heat exchangers. Electrical conductivity generally decreases with increasing alloy content, but even relatively highly alloyed brasses and bronzes retain sufficient conductivity for use as electrical hardware. For example, the hot-line clamp shown in **Figure P-3** is made from Alloy C84400, a leaded semi-red brass whose electrical conductivity is only 16% that of pure copper. Nevertheless, the alloy has the proper combination of strength and conductivity required for this safety- related application.

Other characteristics of the copper casting alloys can make products simpler and less costly to produce. For example:

 Good Castability. All copper alloys can be sand cast. Many compositions can also be specified for permanent mold, plaster, precision and die castings, while continuous casting and centrifugal casting are applicable to virtually all of the copper alloys. With such a wide choice of processes, castability rarely restricts product design.

Excellent Machinability and Fabricability. Almost all castings require some machining; therefore, the copper alloy's machinability should be an important design consideration. High surface finishes and good tolerance control are the norms with these materials. The leaded copper alloys are free-cutting and can be machined at ultrahigh speeds.

Many unleaded copper alloys can also be machined easily. For example, nickle-aluminum bronze was selected for the motor segment shown in **Figure P-4** in part because it enabled a 50% savings in machining costs compared with stainless steel. Another factor to consider is that many copper alloys are weldable using a variety of techniques. This opens the possibility of economical cast-weld fabrication. Almost all copper alloys can be brazed and soldered. • Reasonable Cost. The copper alloys' predictable castability raises foundry yields, keeping costs low. Copper alloy castings easily compete with stainless steels and nickel-base alloys, which can be difficult to cast and machine.

Copper's initial metal cost may appear high compared with carbon steel, but when the cost is offset by copper's additional service life and the high value of the fully recyclable casting when it is no longer needed, copper's life cycle cost is very competitive.

The following chapters discuss these important qualities of copper alloys in detail. Where appropriate, the metals are ranked according to their mechanical and physical properties. The intent is to allow the designer to compare alloys and casting processes with the intended product's requirements. By consulting the appropriate tables, it should be possible to narrow the choice to a small number of suitable candidate alloys. Final selection can then be made on the basis of detailed product requirements, availability and cost.

FIGURE P-1

Cast aluminum bronze pickling hooks resist corrosion by hot, dilute sulfuric acid.

FIGURE P-3

A leaded semi-red brass was selected for this hot line clamp because it offers an economical combination of strength and corrosion resistance with adequate electrical conductivity.

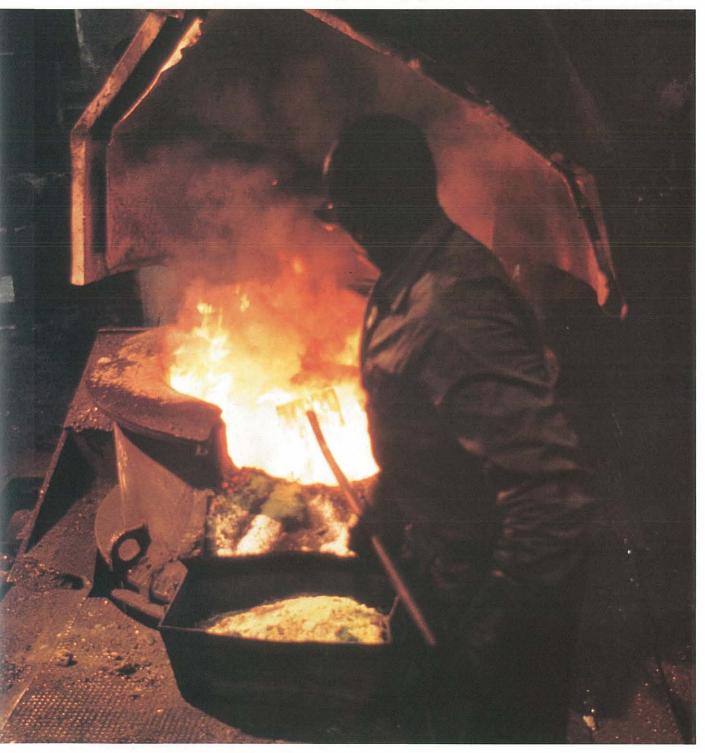

FIGURE P-2 Cast sleeve bearings are available in a large variety of copper allovs.

FIGURE P-4 The aluminum bronze chosen for this complex motor segment casting enabled a 50% savings in machining costs compared with stainless steel.

Understanding Copper Casting Alloys

I. CLASSIFYING THE COPPER ALLOYS

Over the years, copper alloys have been identified by individual names and by a variety of numbering systems. Many of these names and numbers are still used, often interchangeably, and because this can be confusing, we will briefly explain how the various identification systems relate to each other. With this as a foundation. we will next describe the families of copper alloys as they are categorized in today's nomenclature. In this chapter, we will also briefly discusses the various metals' metallurgical structures and foundry characteristics, since these are important considerations when deciding how a casting should be produced.

Common Classification Systems

A 1939 American Society for Testing and Materials (ASTM) standard, *Classification of Copper-Base Alloys*, codified 23 distinct alloy families based on general compositional limits. Already-familiar designations such as "Leaded Brass," "Tin Bronze" and "Aluminum Bronze" were associated for the first time with specific composition ranges.

Soon, other ASTM standards added designations for individual alloys within the families. For example, "Leaded Semi-Red Brass 5A" was defined as an alloy containing between 78% and 82% copper, 2.25% to 3.25% tin, 6% to 8% lead and 7% to 10% zinc, with stated limits on impurities. Minimum mechanical properties were also fixed, permitting alloys to be called out in design specifications and construction codes.

Another classification system still in use identifies alloys in terms of their nominal compositions. Thus, a leaded red brass containing 85% copper, 5% tin, 5% lead and 5% zinc is simply called "85-5-5-5," while a leaded tin bronze is somewhat awkwardly designated as 88-6-1¹/2-4¹/2. The system is limited to copper-tin-lead-zinc alloys (always given in that order), but there are some exceptions.

Various other naming and/or numbering systems are used by, for example, ingot suppliers who furnish casting stock to foundries, or designers who, when they specify alloys, commonly call out ASTM or ASME standards or military specifications. None of these systems is obsolete; they are just not in general use in all industries.

The UNS Numbering System

In North America, the accepted designations for cast copper alloys are now part of the Unified Numbering System for Metals and Alloys (UNS), which is managed jointly by the ASTM and the Society of Automotive Engineers (SAE). Under the UNS system, the copper alloys' identifiers take the form of five-digit codes preceded by the letter "C."

The five-digit codes are based on, and supersede, an older three-digit system developed by the U.S. copper and brass industry. The older system was administered by the Copper Development Association (CDA), and alloys are still sometimes identified by their "CDA numbers." The UNS designations for copper alloys are simply twodigit extensions of the CDA numbers. For example, the leaded red brass (85-5-5-5), once known as CDA Copper Alloy No. 836, became UNS C83600.

This selection guide uses UNS numbers for all alloys, but traditional names are included for clarity wherever appropriate. In addition, alloys are described by their *tempers*, which are terms that define metallurgical condition, heat treatment, and/or casting method. The terminology associated with tempers is spelled out in ASTM B 601,⁷ and temper designations applicable to cast alloys are listed in **Table 1**, page 8. For convenience, **Table 2**, page 12, lists the alloys by UNS number, common name and conforming specifications.

The UNS alloy list is updated periodically. New alloys may be added on request to CDA, subject to a few simple restrictions, while alloys that are no longer produced are deleted. The alloys described in this handbook are listed in CDA's *Standard Designations for Wrought and Cast Copper and Copper Alloys*, 1992 edition.

The Copper Alloy Families: Classification and Major Uses

Cast copper alloys are assigned UNS numbers from C80000 to C99999. The metals are arranged in a series of eight families drawn from the 18 compositionally related classifications previously identified by the ASTM. These families, some of which include subclassifications, include:

Coppers (C80100–C81200). Coppers are high-purity metals with a minimum designated copper content of 99.3%. They are not intentionally alloyed but may contain traces of silver or deoxidizers. The phosphorus deoxidizer in, for example, C81200 renders this copper somewhat easier to weld by oxyacetylene techniques.

The coppers are soft and ductile and are used almost exclusively for their unsurpassed electrical and thermal conductivities in products such as terminals, connectors and (water-cooled) hot metal handling equipment. **Figure I-1**, page 25, shows a blast furnace tuyere

TABLE 1. Standard Temper Designations for Copper Casting Alloys (Based on ASTM B 601)

Temper Designations	Temper Names
Annealed—0	
010	Cast and Annealed
	(Homogenized)
011	As Cast and Precipitation
	Heat Treated
As-Manufactured—M	
M01	
M02	
M03	
M04	
	As Permanent Mold Cast
M06	
M07	As Continuous Cast
Heat-Treated—TQ	
TQ00	Quench Hardened
TQ30	Quench Hardened and
	Tempered
TQ50	Quench Hardened and
	Temper Annealed
Solution Heat Treated and Spinodal Heat Treated—TX	
TX00	Spinodal Hardened (AT)
Solution Heat	
Treated—TB	
	Solution Heat Treated (A)
	Solution Heat Treated (A)

cast from high conductivity copper. The coppers have very high corrosion resistance, but this is usually a secondary consideration.

High Copper Alloys (C81400-C82800). Next in order of decreasing copper content are alloys with a minimum designated purity of 94% Cu. The high copper alloys are used primarily for their unique combination of high strength and good conductivity. Their corrosion resistance can be better than that of copper itself. Chromium coppers (C81400 and C81500), with a tensile strength of 45 ksi (310 MPa) and a conductivity of 82% IACS (see page 86) (as heat treated), are used in electrical contacts, clamps, welding gear and similar electromechanical hardware. At more than 160 ksi (1,100 MPa), the beryllium coppers have the highest tensile strengths of all the copper alloys. They are used in heavy duty mechanical and electromechanical equipment requiring ultrahigh strength and good electrical and/or thermal conductivity. The resistance welding machine component shown in **Figure I-2**, page 25, was cast in beryllium copper for precisely those reasons.

The high copper alloys' corrosion resistance is as good as or better than that of pure copper. It is adequate for electrical and electronic products used outdoors or in marine environments, which generally do not require extraordinary corrosion protection.

Brasses (C83300–C87900). Brasses are copper alloys in which zinc is the principal alloying addition. Brasses may also contain specified quantities of lead, tin, manganese and silicon. There are five subcategories of cast brasses, including two groups of copper-tin-(lead)-zinc alloys:

- C83300–C83810 and C84200–C84800, the red and leaded red brasses and semired and leaded semi-red brasses, respectively;
- copper-zinc-(lead) alloys, C85200– C85800, yellow brasses and leaded yellow brasses;
- manganese bronzes and leaded manganese bronzes, C86100–C86800, also known as high strength and leaded high strength yellow brasses; and,
- copper-silicon alloys, C87300-C87900, which are called silicon brasses or, if they contain more silicon than zinc, silicon bronzes.

The lower the zinc content in the copper-tin-(lead)-zinc alloys, the more copper-like, or "red" they appear. With a few exceptions, red and leaded red brasses contain less than about 8% zinc; semi-red brasses, including the leaded versions, contain between 7% and 17% zinc, while yellow brasses and their leaded counterparts contain as much as 41% zinc. Brasses containing up to 32.5% zinc are also sometimes called "alpha" brasses after the common designation for their single-phase, face-centered cubic crystal structure.

Red and Semi-Red Brasses, Unleaded and Leaded (C83300– C84800) The most important brasses

C84800). The most important brasses in terms of tonnage poured are the leaded red brass, C83600 (85-5-5-5), and the leaded semi-red brasses, C84400, C84500 and C84800 (81-3-7-9, 78-3-7-12 and 76-3-6-15, respectively). All of these alloys are widely used in water valves, pumps, pipe fittings and plumbing hardware. A typical downstream water meter is shown in **Figure I-3**, page 25.

Yellow Brasses (C85200– C85800). Leaded yellow brasses such as C85400 (67-1-3-29), C85700 (63-1-1-35) and C85800 are relatively low in cost and have excellent castability, high machinability and favorable finishing characteristics. Their corrosion resistance, while reasonably good, is lower than that of the red and semi-red brasses. Typical tensile strengths range from 34 to 55 ksi (234 to 379 MPa).

Leaded yellow brasses are commonly used for mechanical products such as gears and machine components, in which relatively high strength and moderate corrosion resistance must be combined with superior machinability. The yellow brasses are often used for architectural trim and decorative hardware. The relatively narrow solidification range and good high-temperature ductility of the yellow brasses permit some of these alloys to be die cast. The yellow brass door bolt shown in Figure I-4, page 52, was pressure die cast to near net shape, thereby avoiding the costly machining and forming operations needed in an alternative manufacturing method. Other die-castable alloys include the structurally similar high strength yellow brasses and the silicon brasses.

High Strength and Leaded High Strength Yellow Brasses (C86100– C86800), or manganese bronzes, are the strongest, as cast, of all the copper alloys. The "all beta" alloys C86200 and C86300 (the alloys' structure is described below) develop typical tensile strengths of 95 and 115 ksi (655 and 793 MPa), respectively, without heat treatment. These alloys are weldable, but should be given a post-weld stress relief. The high strength brasses are used principally for heavy duty mechanical products requiring moderately good corrosion resistance at a reasonable cost. The rolling mill adjusting nut shown in **Figure I-5**, page 52, provides a typical example. The high strength yellow brass alloys have been supplanted to some extent by aluminum bronzes, which offer comparable properties but have better corrosion resistance and weldability.

Silicon Bronzes/Brasses (C87300–C87900) are moderate strength alloys with good corrosion resistance and useful casting characteristics. Their solidification behavior makes alloys in this group amenable to die, permanent mold and investment casting methods. Applications range from bearings and gears to plumbing goods and intricately shaped pump and valve components.

Bronzes. The term "bronze" originally referred to alloys in which tin was the major alloying element. Under the UNS system, the term now applies to a broader class of alloys in which the principal alloying element is neither zinc (which would form brasses) nor nickel (which forms copper-nickels).

There are five subfamilies of bronzes among the cast copper alloys: First listed are the copper-tin alloys, C90200-C91700, or tin bronzes. Next come the copper-tin-lead alloys, which are further broken down into leaded tin bronzes, C92200-C92900, and high leaded tin bronzes, C93100-C94500. Copper-tin-nickel (lead) alloys include the nickel-tin bronze, C94700, and the leaded nickel-tin bronze, C94900. Both of these alloys contain less than 2% lead. Similar alloys with higher nickel contents, C97300-C97800, are classified as copper-nickel-zinc alloys, but are more commonly known as nickel silvers or German silvers. Copper-aluminum-iron and copper-aluminum-iron-nickel alloys, C95200-C95900, are classified as aluminum bronzes and nickel-aluminum bronzes. Manganese bronzes are listed among the brasses because of their high zinc content.

Tin bronzes offer excellent corrosion resistance, reasonably high strength and good wear resistance. Used in sleeve bearings, they wear especially well against steel. Unleaded tin bronze C90300 (88-8-0-4) is used for bearings, pump impellers, piston rings, valve fittings and other mechanical products. The alloy's leaded version, C92300 (87-8-1-4), has similar uses, but is specified when better machinability and/or pressure tightness is needed. Alloy C90500, formerly known as SAE Alloy 62, is hard and strong, and has especially good resistance to seawater corrosion. Used in bearings, it resists pounding well, but lacking lead, it requires reliable lubrication and shaft hardnesses of 300 to 400 HB.

Alloy C93200 is the best-known bronze bearing alloy. Widely available and somewhat less expensive than other bearing alloys, this high leaded tin bronze is also known as "Bearing Bronze." The alloy is recognized for its unsurpassed wear performance against steel journals. It can be used against unhardened and not-perfectlysmooth shafts.

Alloy C93500, another high leaded tin bronze, combines favorable antifriction properties with good loadcarrying capacities; it also conforms to slight shaft misalignments. Alloy C93600, a higher lead, lower zinc bronze bearing alloy is claimed to provide faster machining, lower friction and improved corrosion resistance in sulfite media. The higher tin content of alloy C93700 (formerly SAE 64) gives it resistance to corrosion in mild acids, mine waters and paper mill sulfite liquors.

Lead weakens all of these bearing alloys but imparts the ability to tolerate interrupted lubrication. Lead also allows dirt particles to become embeded harmlessly in the bearing's surface, thereby protecting the journal. This is important in off-highway equipment such as the shovel loader shown in **Figure I-6**, page 52. The "premier" bearing alloys, C93800 and C94300 also wear very well with steel and are best known for their ability to conform to slightly misaligned shafts.

Nickel-Tin Bronzes (C94700-C94900). The nickel-tin bronzes are characterized by moderate strength and very good corrosion resistance, especially in aqueous media. One member of this family, C94700, can be age-hardened to typical tensile strengths as high as 75 ksi (517 MPa). Wear resistance is particularly good. Like the tin bronzes, nickel-tin bronzes are used for bearings, but these versatile alloys more frequently find application as valve and pump components, gears, shifter forks and circuit breaker parts.

Nickel Silvers (C97300– C97800). These copper-nickel-tin-leadzinc alloys offer excellent corrosion resistance, high castability and very good machinability. They have moderate strength. Among their useful attributes is their pleasing silvery luster. Valves, fittings and hardware cast in nickel silvers are used in food and beverage handling equipment and as seals and labyrinth rings in steam turbines.

Aluminum Bronzes (C95200– C95800). These alloys contain between 3% and 12% aluminum. Aluminum strengthens copper and imparts oxidation resistance by forming a tenacious alumina-rich surface film. Iron, silicon, nickel and manganese are added to aluminum bronzes singly or in combination for higher strength and/or corrosion resistance in specific media.

Aluminum bronzes are best known for their high corrosion and oxidation resistance combined with exceptionally good mechanical properties. The alloys are readily fabricated and welded and have been used to produce some of the largest nonferrous cast structures in existence. Aluminum bronze bearings are used in heavily loaded applications.

Alloy C95200, with about 9.5% aluminum, develops a tensile strength of 80 ksi (550 MPa) as cast. Alloys C95400 and C95500, which contain at least 10% aluminum, can be quenched and tempered much like steels to reach tensile strengths of 105 ksi (724 MPa) and 120 ksi (827 MPa), respectively.

Resistance to seawater corrosion is exceptionally high in nickel-aluminum bronzes. Because of its superior resistance to erosion-corrosion and cavitation, nickel-aluminum bronze C95500 is now widely used for propellers and other marine hardware, **Figure I-7**, page 53. Another nickel-aluminum bronze, C95800, is not heat treated, but nevertheless attains a typical strength of 95 ksi (655 MPa). It should be temperannealed for service in seawater and other aggressive environments in order to reduce the likelihood of dealuminification corrosion (see page 54). The alloy's very good galling resistance, especially against ferrous metals, has increased its use for bearings and wear rings in hydroelectric turbines. Such bearings must be designed for adequate positive lubrication, and journals must display a minimum hardness of 300 HB.

Copper-Nickel Alloys (C96200– C96900). Sometimes referred to as copper-nickels or cupronickels, these comprise a set of solid-solution alloys containing between 10% and 30% nickel. The alloys also contain small amounts of iron and in some cases niobium (columbium) or beryllium for added strength. Seven standard alloys are currently recognized. Corrosion resistance and strength increase with nickel content, but it is the secondary alloying elements that have an overriding effect on mechanical properties.

Alloy C96200, with nominally 10% nickel, attains a typical tensile strength of about 45 ksi (310 MPa) in the as-cast condition. The 30% nickel grade, C96400, can be oil-quenched from 1,050-1,250 F (565-677 C) to increase its strength and hardness through the precipitation of a complex nickel-columbium-silicon intermetallic compound. Tensile strengths will typically reach 60 ksi (414 MPa). The 30% nickel, beryllium-containing grade, C96600, can be age-hardened to a strength of 110 ksi (758 MPa).

The copper-nickel alloys offer excellent resistance to seawater corrosion. This, combined with their high strength and good fabricability, has found them a wide variety of uses in marine equipment. Typical products include pump components, impellers, valves, tailshaft sleeves, centrifugally cast pipe, fittings and marine products such as the centrifugally cast valve body (Alloy C96400) shown in **Figure I-8**, page 53. The alloys are never leaded, and their machining characteristics resemble those of pure copper.

Leaded Coppers (C98200-C98840). The lead in these alloys is dispersed as discrete globules surrounded by a matrix of pure copper or high-copper alloy. The conductivity of the matrix remains high, being reduced only by whatever other alloying elements may be present. Lead contents range from about 25% in alloy C98200 to as high as 58% in alloy C98840. Between 1% and 5% tin is added to alloys C98820 and C98840 for added strength and hardness. Similarly, alloys C98400 and C98600 contain up to 1.5% silver, while C98800 may contain up to 5.5% silver, balanced against the lead content to adjust the alloy's hardness.

The leaded coppers offer the high corrosion resistance of copper and high copper alloys, along with the favorable lubricity and low friction characteristics of high leaded bronzes.

Metallurgy and Foundry Characteristics

The copper alloy families are based on composition and metallurgical structure. These, in turn, influence or are influenced by the way the metals solidify. Solidification behavior is an important consideration, both in casting design and when selecting a casting process. The following descriptions of the alloys according to their structures and freezing behavior is intended as a brief introduction to a very complex subject. More detailed discussions are available from other sources.¹

Coppers. Coppers are metallurgically simple materials, containing a single face-centered cubic alpha phase. (Small amounts of oxides may be present in deoxidized grades.) Coppers solidify at a fixed temperature, 1,981 F (1,083 C), but there is usually some undercooling. Freezing begins as a thin chill zone at the mold wall, then follows the freezing point isotherm inward until the entire body has solidified. Cast structures exhibit columnar grain structures oriented perpendicular to the solidification front. Centerline shrinkage cavities can form at isolated "hot spots" and inadequately fed

regions of the casting; this must be taken into account when laying out the casting's design.

High Copper Alloys. Like the coppers, the high copper alloys solidify by skin formation followed by columnar grain growth. With a few exceptions, the high copper alloys typically have very narrow freezing ranges and also produce centerline shrinkage in regions that are improperly fed.

The chromium and beryllium coppers develop maximum mechanical properties through age-hardening heat treatments consisting of a solutionannealing step followed by quenching and reheating to an appropriate aging temperature. Conductivity is highest in the aged (maximum strength) or slightly overaged (lower strength but higher ductility) conditions, i.e., when the hardening element has mostly precipitated and the remaining matrix consists of nearly pure copper.

Red and Semi-Red Brasses. These alloys go through an extended solidification range characterized by the growth of tiny tree-like structures known as dendrites, **Figure I-9**, page 53. As the alloys solidify, countless dendrites form and grow more or less uniformly throughout the casting. This leads to a structure made up of small, equiaxed grains.

The dendritic solidification process produces what can best be described as an extended mushy-liquid stage. The metal that freezes first may have a slightly different composition than metal that freezes later on, a phenomenon called microsegregation, or "coring." Coring can sometimes be detrimental to mechanical and/or corrosion properties, but the seriousness of the effect, if any, depends on the alloy and the particular environment.

As the interlocking dendrites grow, they eventually shut off the supply of liquid metal. This produces tiny shrinkage voids, called microporosity, between the arms of the last dendrites to solidify. Microporosity can often be tolerated, but it is obviously detrimental when pressure tightness or high mechanical properties are needed. Porosity in these wide-freezing-range brasses can be avoided by controlling directional solidification, i.e., forcing the freezing front to follow a desired path. This ensures that even the last regions to solidify have access to an adequate supply of liquid metal. It should be noted that the red and semi-red brasses are the best alloys to specify for thin-walled sand castings and that leaded versions produce the best degrees of pressure tightness for reasonably thin sections.

Yellow Brasses. These alloys also solidify by the formation of dendrites, however the tendency to form microporosity and microsegregation is reduced because they tend to solidify over a relatively narrow temperature range when chill-cast.

The microstructure of yellow brasses containing more than 32.5% zinc consists of a mixture of the solid-solution alpha phase and the hard, strong beta phase. In yellow brasses, the amount of beta present depends on the alloys' zinc content; in high strength yellow brasses it depends on zinc and aluminum levels. In both cases, beta content is also influenced by the rate of cooling after solidification. Aluminum is such a strong beta former that alloy C86200, which contains only 4% aluminum in addition to about 25% zinc, has a predominantly beta microstructure. Formation of the beta phase leads to a significant increase in strength at low to moderate temperatures.

Considering their moderately high strength, the yellow brasses are very ductile materials at low and intermediate temperatures. On the other hand, the most important metallurgical effect of the beta phase is that it raises ductility significantly at high temperatures. This improves the alloys' resistance to hot cracking in highly restrained molds, and allows some yellow brasses to be cast by the pressure die and/or permanent mold processes.

Bronzes. Tin increases strength and improves aqueous corrosion resistance. It also increases cost, therefore alloy selection involving tin bronzes may entail a cost-benefits analysis. Tin dramatically expands the freezing range in copper alloys and usually produces significant coring, although this is not necessarily harmful.

Leaded Coppers. These alloys undergo a two-step solidification process. That is, the copper fraction (pure copper or high-copper alloy) freezes over the narrow solidification range typical of such alloys. The lead solidifies only after the casting has cooled some 1,300 Fahrenheit (700 Celsius) degrees. Segregation of lead to the last regions to solidify is therefore a potentially serious problem. Chill-casting and/or using thin sections help trap the lead in a uniform dispersion throughout the structure.

Nickel-Tin Bronzes. The nickeltin bronzes can be heat treated to produce precipitation hardening. The precipitating phase is a copper-tin intermetallic compound which forms during slow cooling in the mold or during a subsequent aging treatment. Lead is detrimental to the hardening process to the extent that leaded nickel-tin bronzes are not considered heat-treatable.

Nickel Silvers. Despite their complex composition, nickel silvers display simple alpha microstructures. Nickel, tin and zinc impart solid solution hardening, and mechanical properties generally improve in proportion to the concentration of these elements. The nickel silvers are not heat treatable. The alloys' characteristic silver color is produced primarily by nickel, aided to some extent by zinc.

Aluminum Bronzes. These alloys exhibit some of the most interesting metallurgical structures found among all commercial alloys. Aluminum bronzes containing less than about 9.25% aluminum consist mainly of the face-centered cubic alpha structure, although iron- and nickel-rich phases, which contribute strength, will also be present. Higher aluminum concentrations, and/or the addition of silicon or manganese, lead to the formation of the beta phase. Beta transforms into a variety of secondary phases as the casting cools. Standard alloy compositions are carefully balanced to ensure that the resulting complex structures are beneficial to the bronzes' mechanical properties.

Despite their metallurgical com-

plexity, the aluminum bronzes are extraordinarily versatile alloys. They are well suited to sand casting and are often produced by this method. They are also frequently cast centrifugally. On the other hand, the aluminum bronzes are basically short-freezing alloys and this, coupled with their good elevated temperature properties, also makes them good candidates for the permanent mold and die casting processes.

Copper-Nickels. The coppernickels are metallurgically simple alloys, consisting of a continuous series of solid solutions throughout the copper-nickel system. Copper-rich alloys in the copper-nickel system are known as coppernickels; nickel-rich compositions in this system are called Monel alloys. The copper-nickels solidify over narrow freezing ranges, although the range extends somewhat with increasing nickel content. Segregation is not a serious problem.

Iron, niobium (columbium) and silicon can produce precipitation hardening in copper-nickels through the formation of silicides; however, precipitation takes place readily as the casting cools, and the alloys are consequently not age-hardenable. On the other hand, beryllium-containing C96600 can be age-hardened in the same manner as can ordinary berylliumcopper alloys.

Effects of Lead

As leaded copper alloys freeze, the lead segregates as microscopic liquid pools which fill and seal the interdendritic microporosity left when the highermelting constituents solidified, Figure I-10, page 53. The lead seals the pores and renders the casting pressure-tight. Lead also makes the alloys free-cutting by promoting the formation of small, easily cleared turnings during machining. This improves high-speed finishing operations. Unless present in high concentrations, lead does not have a strong effect on strength, but it does degrade ductility. Copper alloys containing lead cannot be welded, although they can be brazed and soldered.

TABLE 2. Overview of Copper Casting Alloys

UNS	Other Designations, Descriptive Names	Applicable Casting Processes	J	- Composition,	Uses, Significant					
Number	(Former SAE No.)	(See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Coppers									
C80100 ^(1,2)	Oxygen-Free Copper	S, C, CL, PM, I, P	99.95(3)	-	-	-	-	-	-	High purity coppers with excellent electrical and
C81100 ^(1,2)	High Conductivity Copper	S, C, CL, PM, I, P	99.70 ⁽³⁾	-		-	-		-	thermal conductivities. Deoxidation of C81200 improves its weldability.
C81200 ⁽¹⁾	High Conductivity Copper	S, C, CL, PM, I, P	99.9(3)	-	-	-	-	-	.045–.065 P	

	High Copper Alle	oys								
31400 ^(1,2)	700	S, C, CL, PM, I, P	98.5 min. ⁽⁴⁾		-	-	-	-	.02–.10 Be .6–1.0 Cr	Relatively high strength coppers with good elec trical and thermal con-
81500 ^(1,2)	Chromium Copper	S, C, CL, PM, I, P	98.0 min. ⁽⁴⁾	.10	.02	.10	-	.10	.15 Si .10 Al .40–1.5 Cr	ductivity. Strength gene ally inversely propor- tional to conductivities.
81540 ⁽¹⁾	Chromium Copper	S, C, CL, PM, I, P	95.1 min. ^(4,5)	.10	.02	.10	2.0-3.0 ⁽⁶⁾	.15	.40–.8 Si .10 Al .10–.6 Cr	Used where good comb nation of strength and conductivity is needed, as in resistance welding electrodes, switch blade and components, dies, clutch rings, brake drums, as well as bear- ings and bushings. Bea- ryllium coppers have highest strength of all
82000 ^(1,2)	100	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.10	.10 Al .10 Cr .15 Si 2.40–2.70 Co ⁽⁶⁾ .45–.8 Be	
82200 ^(1,2)	35C, 53B	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	-	-	1.0-2.0	-	.35–.80 Be .30 Co	copper alloys, are used in bearings, mechanica products and non-spar
82400 ^(1,2)	165C	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.20	.20–.65 Co 1.60–1.85 Be .15 Al .10 Cr	ing safety tools.
82500 ^(1,2)	200	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.25	1.90–2.25 Be .35–.70 Co ⁽⁶⁾ .20–.35 Si .15 Al .10 Cr	
82510	Increased-Co 20C	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.25	1.90–2.15 Be 1.0–1.2 Co ⁽⁶⁾ .20–.35 Si .15 Al .10 Cr	
82600 ^(1,2)	2450	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.25	2.25–2.55 Be .35–.65 Co .20–.35 Si .15 Al .10 Cr	
82700 ^(1,2)	Nickel-Beryllium Copper	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	.10	.02	.10	1.0–1.5	.25	2.35–2.55 Be .15 Si .15 Al .10 Cr	
continued o	n next page									

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes

S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold

UMO	Other Designations,	Applicable Casting	asting Composition, percent maximum, unless shown as a range or minimum*							lless Oles Massa
UNS Number	Descriptive Names (Former SAE No.)	Processes (See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significant Characteristics
	High Copper All	loys \cont	inued							
C82800 ^(1,2)	275C	S, C, CL, PM, I, P, D	Rem. ⁽⁴⁾	.10	.02	.10	.20	.25	2.50–2.85 Be .35–.70 Co ⁽⁶⁾ .20–.35 Si .15 Al .10 Cr	
	Copper-Tin-Zind (Red and Leade		and the second	nc-Lead /	Alloys					
C83300 ^(1,2)	131, Contact Metal	S, C, CL	92.0-94.0 ^(7,8)	1.0-2.0	1.0-2.0	2.0-6.0	_	_		High-copper brasses
C83400 ^(1,2)	407.5, Commercial Bronze 90/10, Gilding Metal	9 S, C, CL	88.0-92.0 ^(7,8)	.20	.50	8.0–12.0	1.0	.25	.25 Sb .08 S .03 P .005 Si .005 Al	with reasonable electri- cal conductivity and moderate strength. Use for electrical hardware, including cable connec tors.
283450	Nickel-Bearing Leaded Red Brass	S, C, CL	87.0–89.0 ^(7.8)	2.0–3.5	1.5–3.0	5.5–7.5	.8–2.0 ⁽⁹⁾	.30	.25 Sb .08 S .03 P ⁽¹⁰⁾ .005 Al .005 Si	
283500	Leaded Nickel-Bearing Tin Bronze	S, C, CL	86.0-88.0 ^(7,8)	5.5–6.5	3.5–5.5	1.0–2.5	.50–1.0 ⁽⁹⁾	.25	.25 Sb .08 S .03 P(10) .005 Al .005 Si	
C83600 ^(1,2)	115, 85-5-5-5. Composition Bronze, Ounce Metal, (SAE 40)	S, C, CL, I	84.0-86.0 ^(7,8)	4.0-6.0	4.0-6.0	4.0-6.0	1.0 ⁽⁹⁾	.30	.25 Sb .08 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	Good corrosion resis- tance, excellent castability and modera strength. Lead conten ensures pressure tight ness. Alloy C83600 is
C83800 ^(1,2)	120, 83-4-6-7, Commercial Red Brass, Hydraulic Bronze	S, C, CL	82.0-83.8 ^(7.8)	3.3–4.2	5.0-7.0	5.0-8.0	1.0 ⁽⁹⁾	.30	.25 Sb .08 S .03 P ⁽¹⁰⁾ .005 Al .005 Si	one of the most impor- tant cast alloys, widely used for plumbing fit- tings, other water-ser- vice goods. Alloy C83800 has slightly
C83810	Nickel-Bearing Leaded Red Brass	d S, C, CL	Rem. ^(7,8)	2.0–3.5	4.0-6.0	7.5–9.5	2.0 ⁽⁹⁾	.50(11)	Sb ⁽¹¹⁾ As ⁽¹¹⁾ .005 Al .10 Si	lower strength, but is essentially similar in properties and applica- tion.

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Leg	end: Applicable Cas	ting Processes
S = Sand	C = Continuous	CL = Centrifugal
D = Die	I = Investment	P = Plaster
	PM = Permanent Me	old

13

UNS	Other Designations, Descriptive Names	Applicable Casting Processes	(Composition,	percent maxi	mum, unless sh	iown as a rang	e or minimu	m*	Uses, Significant
Number	(Former SAE No.)	(See Legend)) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Copper-Tin-Zin (Leaded Semi-I		Contraction of the second s							
C84200 ^(1.2)	101, 80-5-21/2-121/2	S, C, CL	78.0-82.0 ^(7.8)	4.0-6.0	2.0-3.0	10.0–16.0	.8 ⁽⁹⁾	.40	.25 Sb .08 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	General purpose alloys for plumbing and hard- ware goods. Good ma- chinability, pressure tightness. Alloy C84400 in the mest conclus
C84400 ^(1,2)	123, 81-3-7-9, Valve Composition, 81 Metal	S, C, CL	78.0-82.0 ^(7.8)	2.3–3.5	6.0-8.0	7.0-10.0	1.0 ⁽⁹⁾	.40	.25 Sb .08 S .02 P(10) .005 Al .005 Si	is the most popular plumbing alloy in U.S. markets.
C84410		S, C, CL	Rem. ^(7.8)	3.0-4.5	7.0–9.0	7.0–11.0	1.0 ⁽⁹⁾	(13)	Sb ⁽¹³⁾ .01 Al .20 Si .05 Bi	
C84500 ^(1,2)	125, 78 Metal	S, C, CL	77.0–79.0 ^(7.8)	2.0-4.0	6.0-7.5	10.0–14.0	1.0 ⁽⁹⁾	.40	.25 Sb .08 S .02 P ⁽¹⁰⁾ .005 Al .005 Si	
C84800 ^(1,2)	130, 76-3-6-15, 76 Metal	S, C, CL	75.0–77.0 ^(7.8)	2.0–3.0	5.5-7.0	13.0–17.0	1.0 ⁽⁹⁾	.40	.25 Sb .08 S .02 P ⁽¹⁰⁾ .005 Al .005 Si	

	Copper-Zinc and (Yellow and Leade			and the second se						
C85200 ⁽¹⁾	400, 72-1-3-24, High Copper Yellow Brass,	S, C, CL	70.0-74.0 ^(7,14)	.7–2.0	1.5–3.8	20.0–27.0	1.0 ⁽⁹⁾	.6	.20 Sb .05 S .02 P .005 Al .05 Si	Low-cost, low-to-moder- ate strength, general- purpose casting alloys with good machinability, adequate corrosion re- sistance for many water-
C85400 ^(1,2)	403, 67-1-3-29, Commrcl. No.1 Yellow Brass	S, C, CL, PM, I, P	65.0-70.0 ^(7,19)	.50-1.5	1.5–3.8	24.0-32.0	1.0 ⁽⁹⁾	.7	.35 Al .05 Si	service applications in- cluding marine hardware and automotive cooling
C85500 ^(1,2)	60-40 Yellow Brass	S, C, CL	59.0-63.0 ^(7,19)	.20	.20	Rem.	.20 ⁽⁹⁾	.20	.20 Mn	systems. Some compo-
C85700 ^(1,2)	405.2, 63-1-1-35, B2, Permanent Mold Brass	S, C, CL, PM, I, P	58.0-64.0 ^(7,14)	.50–1.5	.80–1.5	32.0-40.0	1.0 ⁽⁹⁾	.7	.8 Al .05 Si	sitions are amenable to permanent mold and die casting processes.
C85800 ^(1,2)	405.1, Die Casting Yellow Brass	S, C, CL, PM, I, P D	57.0 min. ^(7,19)	1.5	1.5	31.0-41.0	.50 ⁽⁹⁾	.50	.05 Sb .25 Mn .05 As .05 S .01 P .55 Al .25 Si	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

UNS	Other Designations, Descriptive Names	Applicable Casting Processes	Uses, Significant							
Number	(Former SAE No.)	(See Legend)) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Manganese Bro (High Strength a					1.5				
C86100 ^(1,2)	423, 90,000 Tensile Manganese Bronze	S, CL, PM, I, P	66.0–68.0 ^(7,15)	.20	.20	Rem.	-	2.0-4.0	4.5–5.5 Al 2.5–5.5 Mn	Alloys with high mech- anical strength, good corrosion resistance and favorable castability. Car
C86200 ⁽¹⁾	423, 95,000 Tensile Manganese Bronze, (SAE 430A)	S, C, CL, PM, I, P, D	60.0–66.0 ^(7,15)	.20	.20	22.0–28.0	1.0 ⁽⁹⁾	2.0-4.0	3.0–4.9 Al 2.5–5.0 Mn	be machined, but with the exception of C86400 and C86700, are less readily machined than leaded compositions.
C86300 ⁽¹⁾	424, 110,000 Tensile Manganese Bronze, (SAE 430B)	S, C, CL, PM, I, P	60.0–66.0 ^(7,15)	.20	.20	22.0–28.0	1.0 ⁽⁹⁾	2.0-4.0	5.0–7.5 Al 2.5–5.0 Mn	Alloy C86300 can attain tensile strengths exceed ing 115 ksi (793 MPa). Used for mechanical de vices: gears, levers,
C86400 ^(1,2)	420, 60,000 Tensile Manganese Bronze	S, C, CL, PM, I, P, D	56.0–62.0 ^(7,15)	.50–1.5	.50–1.5	34.0-42.0	1.0 ⁽⁹⁾	.40-2.0	.50–1.5 Al .10–1.5 Mn	brackets, valve and pump components for fresh and seawater ser- vice. When used for
C86500 ^(1,2)	421, 65,000 Tensile Manganese Bronze, (SAE 43)	S. C, CL, PM, I, P	55.0–60.0 ^(5,13)	1.0	.40	36.0–42.0	1.0 ⁽⁹⁾	.40–2.0	.50–1.5 Al .10–1.5 Mn	high strength bearings, alloys C86300 and C86400 require hard- ened shafts.
C86700 ^(1,2)	422, 80,000 Tensile Manganese Bronze	S, C, CL, PM, I, P	55.0-60.0 ^(7,15)	1.5	.50–1.5	30.0–38.0	1.0 ⁽⁹⁾	1.0-3.0	1.0–3.0 Al .10–3.5 Mn	
C86800 ^(1,2)	Nickel-Manganese Bronze	S, C, CL, PM, I, P	53.5–57.0 ^(7,15)	1.0	.20	Rem.	2.5-4.0 ⁽⁹⁾	1.0-2.5	2.0 Al 2.5–4.0 Mn	

Copper-Silicon Alloys (Silicon Bronzes and Silicon Brasses)

C87300	95-1-4, Silicon Bronze	S, C, CL, PM, I, P	94.0 min. ⁽⁴⁾	<i>H</i> a	.20	.25		.20	3.5–4.5 Si .80–1.5 Mn	Moderate-to-high strength alloys with good corrosion resis-
C87400 ^(1,2)	500	S, CL, PM, I, P, D	79.0 min. ⁽⁴⁾	-	1.0	12.0–16.0	-	_	.80 Al 2.5–4.0 Si	tance and favorable cas ing properties. Used for mechanical products ar
C87500 ^(1,2)	500	S, CL, PM, I, P, D	79.0 min. ⁽⁴⁾	-	.50	12.0–16.0	_		.50 AI 3.0–5.0 Si	pump components where combination of strength and corrosion
C87600 ^(1,2)	500, Low Zinc Silicon Brass	s, cl, pm, I, p, d	88.0 min. ⁽⁴⁾	-	.50	4.0-7.0		.20	3.5–5.5 Si .25 Mn	resistance is important Similar compositions a commonly die and/or
87610		S, CL, PM, I, P, D	90.0 min. ⁽⁴⁾	-	.20	3.0–5.0	-	.20	3.0–5.0 Si .25 Mn	permanent mold cast i Europe and the U.K.
C87800 ^(1,2)	500, Die Cast Silicon Brass	S, CL, PM, I, P, D	80.0 min. ⁽⁴⁾	.25	.15	12.0–16.0	.20 ⁽⁹⁾	.15	.15 Al 3.8–4.2 Si .15 Mn .01 Mg .05 S .01 P .05 As .05 Sb	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold

	Other Designations,	Applicable Casting	Composition, percent maximum, unless shown as a range or minimum*							 Uses. Significant
UNS Number	Descriptive Names (Former SAE No.)	Processes (See Legend)	Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significant Characteristics
	Copper-Tin All (Tin Bronzes)	oys								
C90200 ^(1,2)	242, 93-7-0-0,	S, C, CL, PM, I, P	91.0–94.0 ^(7,16)	6.0-8.0	.30	.50	.50 ⁽⁹⁾	.20	.20 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	Hard, strong alloys with good corrosion resis- tance, especially agains seawater. As bearings, they are wear resistant
C90300 ^(1,2)	225, 88-8-0-4, Navy "G" Bronze, (SAE 620)	S, C, CL, PM, I, P	86.0–89.0 ^(7,16)	7.5–9.0	.30	3.0–5.0	1.0 ⁽⁹⁾	.20	.20 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	and resist pounding wel Moderately machinable. Widely used for gears, worm wheels, bearings, marine fittings, piston rings, and pump compo
C90500 ^(1,2)	210, 88-10-0-2, Gun Metal, (SAE 62)	S, C, CL, PM, I, P	86.0-89.0 ^(7,25)	9.0–11.0	.30	1.0–3.0	1.0 ⁽⁹⁾	.20	.20 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	nents.
C90700 ^(1,2)	205, 89-11, (SAE 65)	S, C, CL, PM, I, P	88.0–90.0 ^(7,16)	10.0–12.0	.50	.50	.50 ⁽⁹⁾	.15	.20 Sb .05 S .30 P ⁽¹⁰⁾ .005 Al .005 Si	
C90710		S, C, CL, PM, I, P	Rem. ^(7,16)	10.0–12.0	.25	.05	.10 ⁽⁹⁾	.10	.20 Sb .05 S .05–1.2 P ⁽¹⁰⁾ .005 Al .005 Si	
C90800		S, C, CL, PM, I, P	85.0-89.0 ^(7,16)	11.0–13.0	.25	.25	.50 ⁽⁹⁾	.15	.20 Sb .05 S .30 P ⁽¹⁰⁾ .005 Al .005 Si	
C90810		S, C, CL, PM, I, P	Rem. ^(7,16)	11.0–13.0	.25	.30	.50 ⁽⁹⁾	.15	.20 Sb .05 S .15–.8 P ⁽¹⁰⁾ .005 Al .005 Si	
C90900 ^(1,2)	199, 87-13-0-0	S, C, CL, PM, I, P	86.0–89.0 ^(7,16)	12.0–14.0	.25	.25	.50 ⁽⁹⁾	.15	.20 Sb .05 S .05 P(10) .005 Al .005 Si	
C91000 ^(1,2)	197, 85-14-0-1	S, C, CL, PM, I, P	84.0-86.0 ^(7,16)	14.0–16.0	.20	1.5	.80 ⁽⁹⁾	.10	.20 Sb .05 S .05 P(10) .005 Al .005 Si	
C91100^(1,2)		S, C, CL, PM, I, P	82.0-85.0 ^(7,16)	15.0–17.0	.25	.25	.50(9)	.25	.20 Sb .05 S 1.0 P ⁽¹⁰⁾ .005 Al .005 Si	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes

S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold

UNS Number	Descriptive Names (Former SAE No.)	Processes (See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significan Characteristics
	Copper-Tin Allo (Tin Bronzes)	oys ∖contir	nued							
C91300 ^(1.2)	194, 81-19	S, C, CL, PM, I, P	79.0-82.0 ^(7,16)	18.0–20.0	.25	.25	.50(9)	.25	.20 Sb .05 S 1.0 P ⁽¹⁰⁾ .005 Al .005 Si	
C91600 ^(1,2)	205N, 88-10 ¹ /2-0-0-1 ¹ /2, Nickel Gear Bronze	S, C, CL, PM, I, P	86.0-89.0 ^(7,16)	9.7–10.8	.25	.25	1.2–2.0 ⁽⁹⁾	.20	.20 Sb .05 S .30 P ⁽¹⁰⁾ .005 Al .005 Si	
C91700 ^(1,2)	86 ¹ /2-12-0-0-1 ¹ /2, Nickel Gear Bronze	S, C, CL, PM, I, P	84.0–87.0 ^(7,16)	11.3–12.5	.25	.25	1.20–2.0 ⁽⁹⁾	.20	.20 Sb .05 S .30 P(10) .005 Al .005 Si	

	(Lecaded III Dioi									
C92200 ^(1,2)	245, 88-6-1 ¹ /2-4 ¹ /2, Navy "M" Bronze, Steam Bronze, (SAE 622)	S, C, CL, PM, I, P	86.0-90.0 ^(7.8)	5.5–6.5	1.0–2.0	3.0–5.0	1.0 ⁽⁹⁾	.25	.25 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	Lead improves machin- ability in these tin bronzes but does not materially affect me- chanical properties. The alloys are essentially
C92210	_		86.0-89.0 ^(7,8)	4.5–5.5	1.7–2.5	3.0-4.5	.7–1.0	.25	.25 Sb .05 S .03 P .005 Al .005 Si	free-cutting versions of the tin bronzes, above, and have similar proper- ties and uses.
C92300 ^(1,2)	230, 87-8-1-4 Leaded "G" Bronze	S, C, CL, PM, I, P	85.0–89.0 ^(7,8)	7.5–9.0	.30–1.0	2.5–5.0	1.0 ⁽⁹⁾	.25	.25 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C92310		S, C, CL, PM, I, P	Rem. ^(7,8)	7.5–8.5	.30–1.5	3.5–4.5	1.0 ⁽⁹⁾	-	.03 Mn .005 Al .005 Si	
C92400		S, C, CL, PM, I, P	86.0-89.0 ^(7,8)	9.0–11.0	1.0–2.5	1.0–3.0	1.0 ⁽⁹⁾	.25	.25 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C92410		S, C, CL, PM, I, P	Rem. ^(7,8)	6.0-8.0	2.5–3.5	1.5–3.0	.20 ⁽⁹⁾	.20	.25 Sb .05 Mn .005 Al .005 Si	
\continued o	n next page									

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes S = Sand D = Die C = Continuous I = Investment CL = Centrifugal P = Plaster

PM = Permanent Mold

	Other Designations,			m*	Uses, Significant					
JNS lumber	Descriptive Names (Former SAE No.)	(See Legend)	Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Copper-Tin-Lea (Leaded Tin Bro		continued							
C92500 ^(1,2)	200, 87-11-1-0-1, (SAE 640)	S, C, CL, PM, I, P	85.0–88.0 ⁽⁷⁾	10.0–12.0	. 1.0–1.5	.50	.8–1.5 ⁽⁹⁾	.30	.25 Sb .05 S .30 P ⁽¹⁰⁾ .005 Al .005 Si	
C92600 ^(1,2)	215, 87-10-1-2	S, C, CL, PM, I, P	86.0-88.50 ^(7,8)	9.3–10.5	.8–1.5	1.3–2.5	.7 ⁽⁹⁾	.20	.25 Sb .05 S .03 P ⁽¹⁰⁾ .005 Al .005 Si	
C92610		S, C, CL, PM, I, P	Rem. ^(7,8)	9.5–10.5	.30–1.5	1.7–2.8	1.0 ⁽⁹⁾	.15	.005 AI .005 Si .03 Mn	
C92700 ^(1,2)	206, 88-10-2-0, (SAE 63)	S, C, CL, PM, I, P	86.0-89.0 ^(7,8)	9.0–11.0	1.0–2.5	.7	1.0 ⁽⁹⁾	.20	.25 Sb .05 S .25 P(10) .005 Al .005 Si	
92710		S, C, CL, PM, I, P	Rem. ^(7,8)	9.0–11.0	4.0-6.0	1.0	2.0 ⁽⁹⁾	.20	.25 Sb .05 S .10 P ⁽¹⁰⁾ .005 Al .005 Si	
C92800 ^(1,2)	295, 79-16-5-0 Ring Metal	S, C, CL, PM, I, P	78.0-82.0 ^(7,8)	15.0–17.0	4.0-6.0	.8	.80 ⁽⁹⁾	.20	.25 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C92810		S, C, CL, PM, I, P	78.0-82.0 ⁽⁷⁾	12.0–14.0	4.0-6.0	.50	.8–1.2 ⁽⁹⁾	.50	.25 Sb .05 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C92900 ^(1,2)	84-10-2 ¹ /2-0-3 ¹ /2, Leaded Nickel Tin Bronze	S, C, CL, PM, I, P	82.0-86.0 ⁽⁷⁾	9.0–11.0	2.0–3.2	.25	2.8–4.0 ⁽⁹⁾	.20	.25 Sb .05 S .50 P ⁽¹⁰⁾ .005 Al .005 Si	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

10002	Other Designations,	Applicable Casting		lloss Significant						
UNS Number	Descriptive Names (Former SAE No.)	Processes (See Legend)) Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significant Characteristics
	Copper-Tin-Lead (High Leaded Tir		s)							
C93100		S, C, CL, PM, I, P	Rem. ^(7,15)	6.5–8.5	2.0-5.0	2.0	1.0 ⁽⁹⁾	.25	.25 Sb .05 S .30 P ⁽¹⁰⁾ .005 Al .005 Si	Most commonly used bearing alloys, found in bearings operating at moderate loads and moderate-to-high
C93200 ^(1,2)	315, 83-7-7-3, Bearing Bronze, (SAE 660)	S, C, CL, PM, I, P	81.0-85.0 ^(7,15)	6.3–7.5	6.0-8.0	1.0-4.0	1.0 ⁽⁹⁾	.20	.35 Sb .08 S .15 P ⁽¹⁰⁾ .005 Al .005 Si	speeds, as in electric motors and appliances. Alloy C93200 is consid- ered the workhorse alloy of the series. Alloy C93600 has improved machining and anti-seiz-
C93400 ^(1,2)	311, 84-8-8-0	S, C, CL, PM, I, P	82.0-85.0 ^(7,15)	7.0–9.0	7.0–9.0	.8	1.0 ⁽⁹⁾	.20	.50 Sb .08 S .50 P ⁽¹⁰⁾ .005 Al .005 Si	ing properties. C93800 noted for its good corro- sion resistance against concentrations of sulfu- ric acid below 78%. Al- loy C94100 is especially
C93500 ^(1,2)	326, 85-5-9-1, (SAE 66)	S, C, CL, PM, I, P	83.0-86.0 ^(7,15)	4.3–6.0	8.0–10.0	2.0	1.0 ⁽⁹⁾	.20	.30 Sb .08 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	good under boundary lubricated conditions.
C93600		S, C, CL, PM, I, P	79.0-83.0 ⁽⁸⁾	6.0–8.0	11.0–13.0	1.0	1.0 ⁽⁹⁾	.20	.55 Sb .08 S .15 P ⁽¹⁰⁾ .005 Ai .005 Si	
C93700 ^(1,2)	305, 80-10-10, Bushing and Bearing Bronze, (SAE 64)	S, C, CL, PM, I, P	78.0–82.0 ⁽¹⁵⁾	9.0–11.0	8.0–11.0	.8	.50 ⁽⁹⁾	<u>.</u> 7(17)	.50 Sb .08 S .10 P ⁽¹⁰⁾ .005 Al .005 Si	
C93720		S, C, CL, PM, I, P	83.0 min. ⁽¹⁵⁾	3.5-4.5	7.0-9.0	4.0	.50 ⁽⁹⁾	.7	.50 Sb .10 P ⁽¹⁰⁾	
C93800 ^(1,2)	319, 78-7-15, Anti-Acid Metal, (SAE 67)	S, C, CL, PM, I, P	75.0–79.0 ⁽¹⁵⁾	6.3–7.5	13.0–16.0	.8	1.0 ⁽⁹⁾	.15	.8 Sb .08 S .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C93900 ^(1,2)	79-6-15	S, C, CL, PM, I, P	76.5–79.5 ⁽¹⁸⁾	5.0–7.0	14.0–18.0	1.5	.8(9)	.40	.50 Sb .08 S 1.5 P ⁽¹⁰⁾ .005 Al .005 Si	
C94000 ⁽²⁾		S, C, CL, PM, I, P	69.0–72.0 ⁽¹⁹⁾	12.0–14.0	14.0–16.0	.50	.50–1.0 ⁽⁹⁾	.25	.50 Sb .08 S ⁽²⁰⁾ .05 P ⁽¹⁰⁾ .005 Al .005 Si	
C94100 ⁽²⁾		S, C, CL, PM, I, P	72.0-79.0 ⁽¹⁹⁾	4.5–6.5	18.0–22.0	1.0	1.0 ⁽⁹⁾	.25	.8 Sb .08 S ⁽²⁰⁾ .05 P ⁽¹⁰⁾ .005 Al .005 Si	

Applicable

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes

S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold

UNS	Other Designations, Descriptive Names	tive Names Processes		Composition, percent maximum, unless shown as a range or minimum*							
Number	(Former SAE No.)	(See Legend)	Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significant Characteristics	
	Copper-Tin-Lea (High Leaded 1	the second s									
C94300 ^(1,2)		S, C, CL, PM, I, P	67.0–72.0 ⁽¹⁵⁾	4.5-6.0	23.0–27.0	.8	1.0 ⁽⁹⁾	.15	.80 Sb .08 S ⁽²⁰⁾ .08 P ⁽¹⁰⁾ .005 Al .005 Si		
94310		S, C, CL, PM, I, P	Rem.(15)	1.50-3.0	27.0-34.0	.50	.25–1.0 ⁽⁹⁾	.50	.50 Sb .05 P ⁽¹⁰⁾		
94320		S, C, CL, PM, I, P	Rem. ⁽¹⁵⁾	4.0-7.0	24.0-32.0	-	-	.35	-		
94330		S, C, CL, PM, I, P	68.5-75.5 ⁽¹⁵⁾	3.0-4.0	21.0-25.0	3.0	.50(9)	.7	.50 Sb .10 P ⁽¹⁰⁾		
94400 ^(1.2)	312, 81-8-11 Phosphor Bronze	S, C, CL, PM, I, P	Rem. ⁽¹⁵⁾	7.0–9.0	9.0–12.0	.8	1.0 ⁽⁹⁾	.15	.8 Sb .08 S .50 P ⁽¹⁰⁾ .005 Al .005 Si		
94500 ^(1,2)	321, 73-7-20 Medium Bronze	S, C, CL, PM, I, P	Rem. ⁽¹⁵⁾	6.0-8.0	16.0-22.0	1.2	1.0 ⁽⁹⁾	.15	.80 Sb .08 S .05 P .005 Al .005 Si		

	Copper-Tin-Nick (Nickel-Tin Bron:	Matter Propriet and a state	6							
C94700 ⁽¹⁾	88-5-0-2-5	S, C, CL, PM, I, P	85.0–90.0 ⁽¹⁹⁾	4.5-6.0	.10 ⁽²¹⁾	1.0–2.5	4.5–6.0 ⁽⁹⁾	.25	.15 Sb .20 Mn .05 S .05 P .005 Al .005 Si	High strength structural castings. Easy to cast, pressure tight. Corrosion and wear resistant. C94700 is heat treatable. Alloys used for bearings, worm gears, valve stems
C94800 ⁽¹⁾	87-5-1-2-5, Leaded Nickel-Tin Bronze	S, C, CL, PM, I, P	84.0–89.0 ⁽¹⁹⁾	4.5–6.0	.30–1.0	1.0–2.5	4.5–6.0 ⁽⁹⁾	.25	.15 Sb .20 Mn .05 S .05 P .005 Al .005 Si	worm gears, varie stems and nuts, impellers, screw conveyors, roller bearing cages, and rail- way electrification hard- ware.
C94900	Leaded Nickel-Tin Bronze	S, C, CL, PM, I, P	79.0–81.0 ⁽¹⁶⁾	4.0–6.0 ⁽⁹⁾	4.0-6.0	4.0-6.0	4.0–6.0 ⁽⁹⁾	.30	.25 Sb .10 Mn .08 S .05 P .005 Al .005 Si	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

S = Sand	C = Continuous	CL =	Centrifugal
D = Die	I = Investment	P =	Plaster
	PM = Permanent Mol	d	

TABLE 2.	Overview of	Copper	Casting All	oys \continued
----------	--------------------	--------	-------------	----------------

	Other Designations,	Applicable Casting		Uses Oleritieset						
UNS Number	Descriptive Names (Former SAE No.)	Processes See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Uses, Significant Characteristics
	Copper-Aluminu (Aluminum Bron		nd Coppe	r-Aluminur	n-Iron-Nic	kel Alloy	S			
C95200 ^(1,2)	415, 88-3-9, Aluminum Bronze 9A, (SAE 68a)	S, C, CL, PM, I, P	86.0 min. ⁽¹⁵⁾	-	-	-	-	2.5-4.0	8.5–9.5 AI	The aluminum bronzes are characterized by high
C95210		S, C, CL, PM, I, P	86.0 min. ⁽¹⁵⁾	.10	.05	.50	1.0 ⁽⁹⁾	2.5-4.0	8.5–9.5 Al 1.0 Mn .05 Mg .25 Si	strength and excellent corrosion resistance. Alloys containing more than 9.5% Al can be heat treated, some to tensile
C95220		S, C, CL, PM, I, P	Rem. ⁽⁴⁾		4-1	-	2.5 ⁽⁹⁾	2.5-4.0	9.5–10.5 Al .50 Mn	strengths exceeding 120 ksi (827 MPa). Uses in- clude a variety of heavy duty mechanical and
C95300 ^(1,2)	415, 89-1-10, Aluminum Bronze 9B, (SAE 68b)	S, C, CL, PM, I, P	83.0 min. ⁽¹⁵⁾	-	—	-	-	.8–1.5	9.0-11.0 AI	structural products in- cluding gears, worm drives, valve guides and
C95400 ^(1,2)	415, 85-4-11, Aluminum Bronze 9C,	S, C, CL, PM, I, P	83.0 min. ⁽⁴⁾	-	_	-	1.5 ⁽⁹⁾	3.0-5.0	10.0–11.5 Al .50 Mn	seats. Excellent heavy duty bearing alloys, but do not tolerate misalign-
C95410 ^(1,2)		S, C, CL, PM, I, P	83.0 min. ⁽⁴⁾	-	-	_	1.5-2.5 ⁽⁹⁾	3.0-5.0	10.0–11.5 Al .50 Mn	ment or dirty lubricants, and generally should be used against hardened
C95420		S, C, CL, PM, I, P	83.5 min. ⁽⁴⁾	-	-	-	.50 ⁽⁹⁾	3.0-4.3	10.5–12.0 Al .50 Mn	steel shafts, with both shaft and bearing ma- chined to fine surface
C95500 ^(1,2)	415, 81-4-4-11, Aluminum Bronze 9D	S, C, CL, PM, I, P	78.0 min. ⁽⁴⁾	-	_	-	3.0–5.5 ⁽⁹⁾	3.0-5.0	10.0–11.5 Al 3.5 Mn	finishes.
C95510	Nickel-Aluminum Bronze	S, C, CL, PM, I, P	78.0 min. ⁽²²⁾	.20	_	.30	4.5–5.5 ⁽⁹⁾	2.0-3.5	9.7–10.9 Al 1.5 Mn	
C95520	Nickel-Aluminum Bronze	S, C, CL, PM, I, P	74.5 min. ⁽⁴⁾	.25	.03	.30	4.2-6.0 ⁽⁹⁾	4.0-5.5	10.5–11.5 Al 1.5 Mn .15 Si .20 Co .05 Cr	
C95600 ^(1,2)	91-2-7, Aluminum-Silicon Bronze	S, C, CL, PM, I, P	88.0 min. ⁽¹⁵⁾	-			.25 ⁽⁹⁾	-	6.0–8.0 Al 1.8–3.2 Si	
C95700 ^(1,2)	75-3-8-2-12, Manganese- Aluminum Bronze	S, C, CL, PM, I, P	71.0 min. ⁽⁴⁾	-	-	-	1.5–3.0 ⁽⁹⁾	2.0-4.0	7.0-8.5 Al 11.0-14.0 Mn .10 Si	
C95710	Manganese-Aluminum Bronze	S, C, CL, PM, I, P	71.0 min. ⁽⁴⁾	1.0	.05	.50	1.5–3.0 ⁽⁹⁾	2.0-4.0	7.0–8.5 Al 11.0–14.0 Mn .15 Si .05 P	
C95800 ^(1,2)	415, 81-5-4-9-1,Alpha Nickel-Aluminum Bronze, Propeller Bronze	S, C, CL, PM, I, P	79.0 min. ⁽⁴⁾	-	.03		4.0-5.0 ^(9,23)	3.5–4.5 ⁽²³⁾	8.5–9.5 Al .8–1.5 Mn .10 Si	
C95810	Nickel-Aluminum Bronze	S, C, CL, PM, I, P	79.0 min. ⁽⁴⁾	-	.10	.50	4.0-5.0 ^(9,23)	3.5-4.5(23)	8.5–9.5 Al .8–1.5 Mn .05 Mg .10 Si	
C95900		S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	-	_	.50 ⁽⁹⁾	3.0-5.0	12.0–13.5 Al 1.5 Mn	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Legend: Applicable Casting Processes

S = Sand	C =	Continuous	CL =	Centrifugal
D = Die	1=	Investment	P =	Plaster
	PM =	Permanent Mold		

UNS	Other Designations, Descriptive Names	Applicable Casting Processes	. <u> </u>	– Composition, p	um*	Uses, Significant				
Number	(Former SAE No.)	(See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Copper-Nickel- (Copper-Nickel	and the second	5							
C96200 ^(1,2)	90-10 Copper-Nickel	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	.01	-	9.0–11.0 ⁽⁹⁾	1.0–1.8	1.5 Mn .50 Si .5–1.0 Nb .10 C .02 S .02 P	Excellent corrosion re- sistance, especially against seawater. High strength and toughness from low to elevated temperatures. Very widely used in marine
C96300 ^(1,2)	80-20 Copper-Nickel	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	_	.01	~	18.0–22.0 ⁽⁹⁾	.50–1.5	.25–1.5 Mn .50 Si .50–1.5 Nb .15 C .02 S .02 P	applications, as pump and valve components, fittings, flanges, etc. Be ryllium-containing alloy can be heat treated to approximately 110 ksi (758 MPa).
C96400 ^(1,2)	70-30 Copper-Nickel	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	.01	_	28.0–32.0 ⁽⁹⁾	.25–1.5	1.5 Mn .50 Si .50–1.5 Nb .15 C .02 S .02 P	(100 Mil 4).
C96600 ^(1,2)	717C, Beryllium Copper-Nickel	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	.01	-	29.0–33.0 ⁽⁹⁾	.8–1.1	1.0 Mn .15 Si .40–.7 Be	
C96700	Beryllium-Zirconium- Titanium Copper-Nickel	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	_	.01		29.0–33.0 ⁽⁹⁾	.40–.70	.40–.70 Mn .15 Si 1.1–1.2 Be .15–.35 Zr .15–.35 Ti	
C96800	Spinodal Alloy	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	-	.005		9.5–10.5 ⁽⁹⁾	.50	.05–.30 Mn .05 Si .10–.30 Nb (24)	
C96900	Spinodal Alloy	S, C, CL, PM, I, P	Rem. ⁽⁴⁾	7.5–8.5	.02	.50	14.5–15.5 ⁽⁹⁾	.50	.05–.30 Mn .10 Nb .15 Mg	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

UNS	Other Designations, Descriptive Names	Applicable Casting Processes		Composition,	percent maxi	mum, unless	shown as a ran	ge or minimi	ım*	Uses, Significant
Number	(Former SAE No.)	(See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Copper-Nickel- (Nickel Silvers)		/S							
C97300 ^(1,2)	56-2-10-20-12, 12% Nickel Silver	S, C, CL, PM, I, P	53.0–58.0 ⁽¹⁵⁾	1.5–3.0	8.0–11.0	17.0–25.0	11.0–14.0 ⁽⁹⁾	1.5	.35 Sb .08 S .05 P .005 Al .50 Mn .15 Si	Moderately strong alloys with very good corrosion resistance and a pleasing silver color. Used in valves, fittings and other components for dairy equipment and as archi-
C97400 ^(1,2)	59-3-5-17-16, 15% Nickel Silver	S, C, CL, PM, I, P	58.0-61.0 ⁽¹⁵⁾	2.5–3.5	4.5-5.5	Rem.	15.5–17.0 ⁽⁹⁾	1.5	.50 Mn	tectural and decorative trim.
C97600 ^(1,2)	64-4-4-8-20, 20% Nickel Silver, Dairy Metal	S, C, CL, PM, I, P	63.0–67.0 ⁽²⁵⁾	3.5–4.5	3.0–5.0	3.0–9.0	19.0–21.5 ⁽⁹⁾	1.5	.25 Sb .08 S .05 P .005 Al 1.0 Mn .15 Si	
C97800 ^(1,2)	66-5-2-2-25, 25% Nickel Silver	S, C, CL, PM, I, P	64.0–67.0 ⁽²⁶⁾	4.0-5.5	1.0–2.5	1.0-4.0	24.0–27.0 ⁽⁹⁾	1.5	.20 Sb .08 S .05 P .005 Al 1.0 Mn .15 Si	

	Copper-Lead A (Leaded Coppe									
C98200	Leaded Copper, 25% SAE 49	S, C	Rem. ⁽⁴⁾	.6–2.0	21.0–27.0	.50	.50	.7	.10 P .50 Sb	Ultrahigh lead alloys for special purpose bear- ings. Alloys have rela-
C98400	Leaded Copper, 30%	S, C	Rem. ⁽⁴⁾	.50	26.0–33.0	.50	.50	.7	1.5 Ag .10 P .50 Sb	tively low strength and poor impact properties and generally require reinforcement.
C98600	Leaded Copper, 35% SAE 480	S, C	60.0-70.0	.50	30.0-40.0	-	=	.35	1.5 Ag	remorcement.
C98800	Leaded Copper, 40% SAE 481	S, C	56.5-62.5 ⁽⁵⁾	.25	37.5–42.5 ⁽²⁷⁾	.10	-	.35	5.5 Ag ⁽²⁷⁾ .02 P	
C98820	Leaded Copper, 42%, SAE 484	S, C	Rem.	1.0-5.0	40.0-44.0	-	-	.35	-	
C98840	Leaded Copper, 50%, SAE 485	S, C	Rem.	1.0-5.0	44.0–58.0	-	=	.35	-	

* Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

Le	gend: Applicable Ca	sting Processes
S = Sand	C = Continuous	CL = Centrifugal
D = Die	I = Investment	P = Plaster
	PM = Permanent M	lold

UNS	Other Designations, Descriptive Names	Applicable Casting Processes		Composition,	percent maxir	num, unless	shown as a rai	nge or minim	um*	Uses, Significant
Number	(Former SAE No.)	(See Legend) Cu	Sn	Pb	Zn	Ni	Fe	Other	Characteristics
	Special Alloys									
C99300 ^(1,2)	Incramet 800	S, C, CL	Rem. ⁽²⁵⁾	.05	.02	-	13.5–16.5	.40—1.0	10.7–11.5 Al 1.0–2.0 Co .02 Si	Alloys specifically de- signed for glassmaking molds, but also used for
C99350	Copper-Nickel-Aluminum- Zinc Alloy	S, C, CL	Rem. ⁽²⁵⁾	_	.15	7.5–9.5	14.5–16.0 ⁽⁹⁾	1.0 .25 Mi	9.5–10.5 Al	marine hardware.
C99400 ^(1,2)	Non-Dezincification Alloy, NDZ	S, C, CL I, P	Rem. ⁽²⁵⁾		.25	.50–5.0	1.0–3.5	1.0-3.0	.50–2.0 Al .50–2.0 Si .50 Mn	Moderate strength alloys with good resistance to dezincification and
C99500 ^(1.2)	Copper-Nickel-Aluminum- Zinc-Iron Alloy	S, C, CL	Rem. ⁽²⁵⁾	-	.25	.50–2.0	3.5–5.5	3.0–5.0	.50–2.0 Al .50–2.0 Si .50 Mn	dealuminification. Used in various products for marine (especially out- board) and mining equipment.
C99600	Incramute 1	S, C, CL	Rem. ⁽²⁵⁾	.10	.02	.20	.20	.20	1.0–2.8 Al .20 Co .10 Si 39.0–45.0 Mn .05 C	Special-purpose alloys with exceptionally high damping capacity.
C99700 ^(1,2)	White Manganese Brass	S, CL, PM, I, P, D	54.0 min. ⁽²⁵⁾	1.0	2.0	19.0–25.0	4.0-6.0	1.0	.50–3.0 Al 11.0–15.0 Mn	
C99750 ^(1,2)	Copper-Zinc-Manganese Alloy	S, PM, I, P, D	55.0–61.0 ⁽²⁵⁾	.50–2.5	—	17.0-23.0	5.0	1.0	.25–3.0 Al 17.0–23.0 Mn	

Footnotes

- (1) Data sheet for this alloy can be found in CDA's Standards Handbook, Cast Products, Alloy Data/7.
- (2) Alloy has significant commercial importance.
- (3) Including Ag, % min.
- (4) Cu + Sum of Named Elements, 99.5% min.
- (5) Includes Ag.
- (6) Ni + Co.
- (7) In determining copper min., copper may be calculated as Cu + Ni.
- (8) Cu + Sum of Named Elements, 99.3% min.
- (9) Including Co.
- (10) For continuous castings, P shall be 1.5% max.
- (11) Fe + Sb + As shall be .50% max.
- (12) Cu + Sum of Named Elements, 99.2% min.
- (13) Fe + Sb + As shall be .8% max.
- (14) Cu + Sum of Named Elements, 99.1% min.
- (15) Cu + Sum of Named Elements, 99.0% min.
- * Compositions are subject to minor changes. Consult latest edition of CDA's Standard Designations for Wrought and Cast Copper and Copper Alloys.

Rem. = Remainder

- (16) Cu + Sum of Named Elements, 99.4% min.
- (17) Fe shall be .35% max., when used for steel-backed bearings.
- (18) Cu + Sum of Named Elements, 98.9% min.
- (19) Cu + Sum of Named Elements, 98.7% min.
- (20) For continuous castings, S shall be .25% max.
- (21) The mechanical properties of C94700 (heat treated) may not be attainable if the lead content exceeds .01%.
- (22) Cu + Sum of Named Elements, 99.8% min.
- (23) Fe content shall not exceed Ni content.
- ⁽²⁴⁾ The following additional maximum impurity limits shall apply: .10% AI, .001% B, .001% Bi, .005–.15% Mg, .005% P, .0025% S, .02% Sb, 7.5–8.5% Sn, .01% Ti, 1.0% Zn.
- (25) Cu + Sum of Named Elements, 99.7% min.
- (26) Cu + Sum of Named Elements, 99.6% min.
- (27) Pb and Ag may be adjusted to modify the alloy hardness.

Legend: Applicable Casting Processes S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold PM Permanent Mold

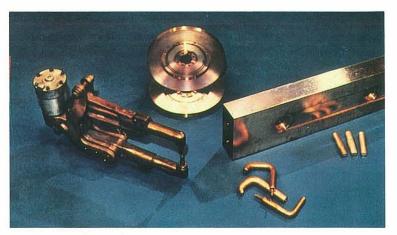


FIGURE I-1

Blast furnace tuyeres are cast in high conductivity copper.

FIGURE I-2

Resistance welding machine components are cast in beryllium copper for maximum strength and high electrical conductivity.

FIGURE I-3

Plumbing goods, such as the water meter shown here, are commonly cast in semi-red brass, an economical alloy with excellent castability and good corrosion resistance.

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum ksi	Typical ksi	0.5% Ext Minimum ksi	Typical ksi	0.2% Minimum ksi	ksi	Minimum in 2 inches	ngation Typical in 2 inches	Rockwell Hardness	
			MPa	MPa	MPa	MPa	MPa	MPa	in 51 mm	in 51 mm		
C80100	S	M01	a E	25 172	_	9 62	-	-	-	40 40		1000
C81100	S	M01		25 172	_	9 62	-	-	-	40 40		
C81200			1 -	-	-	-	-	-		—		
C81400	S	M01		30 207		=	_	12 83	_	35 35	HR62B	
C81400	S	TF00	-	53 365		-	-	36 248	_	11 11	HR69B	
C81500	S	TF00	1. 	51 352		40 276		_	_	17 17	_	
C81540			d <u></u>	-		_	-		-	5 4		
C82000	S	M01		50 345	-			20 138	-	20 20	HR55B	
C82000	S	011		65 448		-		37 255		12 12		
C82000	S	TB00		47 324		πΞa		15 103		25 25	HR40B	
C82000	S	TF00		96 662		_		75 517		6 6	HR96B	
C82200	S	M01		50 345		Ξ		25 172		20 20	HR55B	
C82200	S	011		65 448		-	-	40 276		15 15	HR75B	
C82200	S	ТВОО		45 310		-	-	12 83		30 30	HR30B	
C82200	S	TF00	-	95 655		-	-	75 517		7 7	HR96B	
C82400	S	011	_	100 690	-	-		80 551		3	HR21C	
C82400	S	TB00	<u> </u>	60 414		-	-	20 138		40 40	HR59B	
C82400	S	TF00	-	155 1,068	-	Ξ	-	145 1,000		1 1	HR38C	
C82500	S	M01	-	75 517		-	+	40 276	-	15 15	HR81B	
C82500	S	011	: <u></u> :	120 827		-	-	105 724	-	2 2	HR30C	
C82500	S	ТВ00		60 414				25 172		35 35	HR63B	
C82500	S	TF00	_	160 1,103	<u></u>	_	_	150 1,034		1	HR43C	
C82510		-	-		<u></u>		<u> </u>	-	-	-	_	
C82600	S	M01		80 552		-	<u></u>	50 345	_	10 10	HR86B	
C82600	S	011	-	120 827		-		105 724	_	2 2	HR31C	

CL = Centrifugal P = Plaster

S = Sand

D = Die

C = Continuous I = Investment PM = Permanent Mold

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys

Brinell H 10-mm Bal 500 kg	lardness Il Indicator 3,000 kg	Shear Strength	0.1% Set	pressive Stre 1.0% Set	ngth 10.0% Set	Impac Izod	ct Strength at Charpy V-Notch	t 68 F (20C) Charpy Unnotched	Fatigue Strength	UNS Number
		ksi MPa	ksi MPa	ksi MPa	ksi MPa	ft-lb J	ft-lb J	ft-lb J	ksi MPa	
44HB		<u>12-12</u>		1 <u>1</u>	<u>11</u> '	<u>25-</u> 24		2 <u>1</u> B	9	C80100
			-			-			62	
44HB			_		-				9 62	C81100
_	_		_			_	<u></u>			C81200
						- 1997 - 1 997	<u></u>	- 1.1 		
_			_	-			-			C81400
		_	_	_		_				C81400
and the second second				-		-	-	1		601400
105HB			-	_	-	3	20	<u> </u>	15	C81500
		-			-	4	27		103	
										C81540
_	_		_			_	_	_	_	C82000
				-				-	- 7	
_										C82000
_	_	_		_	_	2. <u></u>	_	. <u></u> 8	_	C82000
				_	- 10 <u>-</u> 10 - 10	-	-			
-	-			-		::		_	18 124	C82000
		-								C82200
	S. S. Sala	_	-		-		_	_		682200
_	_	_	-	-	_		_	_	_	C82200
						—	-			
					-	_	-	_		C82200
_	_	-	-	_	_		_	-	—	C82200
				-	—					
	_		_	_	_	_	_		_	C82400
2 E	—	_	_	_	_		_	_	_	C82400
			-		-	A	-	-		
2		_	_		_			_	23 160	C82400
_	_	_	_	_						C82500
		en e	1993 - 21		-	1	-	-	-	
_	_		_	_		_	-	_		C82500
										000500
		-	-	—	E S		_	_		C82500
3 2	_		-		_	_	-	-	24	C82500
			- 1	-	-	-	-	_	165	
		_	-	_	_			_		C82510
. 		_	_				-			C82600
		-	-	. <u></u>	-		1	-		
		_	_		-		-		-	C82600
			1000			and the		21-21-21-21-21-21-21-21-21-21-21-21-21-2		

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum ksi MPa	Strength Typical ksi MPa	0.5% Ext Minimum ksi MPa	Yield Str ension Typical ksi MPa		Offset Typical ksi MPa	Minimum	ngation Typical in 2 inches in 51 mm	Rockwell Hardness	
C82600	S	ТВ00		70				30			UD75D	-
682000	5	TBUU	_	483	=	_		207		12 12	HR75B	
C82600	S	TF00	_	165	_		_	155		1	HR45C	
			-	1,138		-		1,069		1		
C82700	S	TF00	155		_	-	130 896		_	2	HR39C	
C82800	S	M01		80				50		10	HR88B	
602000	0	WOT		552		-	-	345		10	HNOOD	
C82800	S	011		125		.—.		110		2	HR31C	
			<u> </u>	862	1000	—		758		2		
C82800	S	TB00		80 552	-		-	35 241		10 10	HR85B	
C82800	S	TF00	-	165	_	_	_	155	_	1	HR46C	
002000		1100		1,138	5 	-	_	1,069		1	110400	
C83300	S	M01	_	32	_	10		_		35	HR35B	
				221		69		-		35		
C83400	S	M01		35 241		10 69	_	_		30	HR50F	
002450										30		
C83450			-	=	-	_	=	_				
C83500	-	-	-	—	—	-			_		_	
			-	-		-	-					
C83600	S, CL	M01, M02	30	37	14	17			20	30		
000000	0	(SAE -A)	205	255	97	117	-	—	20	30		
C83600	C	M07 (SAE -B)	36 248	Ξ	19 131	-		=	15 15		1 1 1	
C83600	С	M07	50	_	25	_		_	12	_		
		(SAE -C)	345		170	-		-	12			
C83800	S, CL	M01, M02	30	35	13	16		—	20	25	—	
		(SAE -A)	207	241	90	110		-	20	25		
C83800	C	M07 (SAE -B)	30 207	(<u></u>)	15 103	_	<u></u>	_	16 16	-		
C83810	·	(0.12 0)			_	_	<u></u>	_	_		-	
			-			2. <u></u> 5	14. (c) == 14.					
C84200	S	M01	28	35	-	14		_	15	27	—	
		A 1923 M	193	241		97	-		15	27		
C84400	S	M01	29 200	34 234	13 90	15 103			18 18	26 26		
C84410	_							_			7 <u></u> 7	
004410	(Areased)						-	-	-			
C84500	S	M01	29	35	13	14	_	—	16	28		
			200	241	90	97			16	28		
C84800	S	M01	28 193	37 255	12 83	14 97	-	_	16 16	35 35		
C85200	S, CL	M01, M02	35	38	12							
000200	3, UL		241	262	83	13 90	-		25 25	35 35		
C85400	S, CL	M01, M02	30	34	11	12			20	35	_	
			207	234	76	83		—	20	35		
C85500	S	M01	55	60	-	23	-	—	25	40	HR55B	
			379	414	-	159		-	25	40		

S = Sand D = Die C = Continuous CL = Centrifugal I = Investment P = Plaster

PM = Permanent Mold

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

	Hardness II Indicator 3,000 kg	Shear Strength ksi MPa	Comp 0.1% Set ksi MPa	oressive Strer 1.0% Set ksi MPa	ngth 10.0% Set ksi MPa	Impac Izod ft-Ib J	t Strength at Charpy V-Notch ft-Ib J	t 68 F (20C) Charpy Unnotched ft-lb J	Fatigue Strength ksi MPa	UNS Number
		_	<u></u>	·	_		_	_	_	C82600
_					-	—				092600
	-	-				_		—	-	C82600
. <u> </u>	_	_			_			_	<u> </u>	C82700
: <u></u>	_	_	_	· ·	_	-	_			C82800
					-	7	-	-		
2 8	-	-		_	_	-				C82800
6 <u></u> 6	-	_	_	-	-	—	_	—	-	C82800
_	_	_	_		_		_	_	_	C82800
		1910 - 1919			ane n treb	— ·				001000
35HB	_		_	_	-	_	-			C83300
	_		_	1 1 C	-	: :	_	-		C83400
				<u> </u>			-		<u> </u>	002450
		2 6		_	-		-	_		C83450
		-	_	-	-		_	—	_	C83500
60HB	_		14		38	10	11	6 	11	C83600
		3	97	101-122	262	14	15		76	
					-	-		·—·		C83600
_	-		_		_	_	-	(. 	_	C83600
60HB			12	_	29	8	_	_	_	C83800
COND			83	-	200	11	-			
()	. <u> </u>	_		_	<u> </u>	_	_	. <u> </u>		C83800
15	- 	_	_	_	_	_	_	():		C83810
COUR				-	-		-	1997 (111 8) (1997 (199		CR4200
60HB					_		_			C84200
55HB		_		-	-	8 11	_	-	_	C84400
	_	_						_		C84410
				—			-	1999 - 1 999 - 1999		
55HB		10 0000 0								C84500
55HB			13	16	34	A	12	-	-	C84500
45HB			90 9	110	234 30		16	—	_	C85200
			62	-	207					
50HB		-	9	-	28 193	, -	_			C85400
85HB	-	=		-			_	<u></u>	_	C85500
		0		N <u></u>						

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum	Strength Typical	0.5% Extended Minimum	Yield Str ension Typical		Offset Typical	% Elor Minimum	ngation Typical	Rockwell Hardness	
			ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	in 2 inches in 51 mm	in 2 inches in 51 mm		
C85700	S, CL	M01, M02	40 276	50 345	14 97	18 124	Ξ		15 15	40 40	1 <u></u> 1.	
C85800	D	M04		55 379	-		-	30 207	-	15 15	HR55B	
C86100	S	M01	90 621	95 655		<u></u>	45 310	50 345	18 18	20 20		
C86200	S, CL, C	M01, M02, M07	90 621	95 655	-	-	45 310	48 331	18 18	20 20		
C86300	S	M01	. <u></u> .	119 821		-	_	67 462	-	18 18		
C86300	S, CL	M01, M02 (SAE -A)	110 758	_	_	-	60 414	_	12 12	_	-	
C86300	С	M07 (SAE -B)	110 758	_	_	-	62 427	-	14 14	_	_	
C86400	S	M01	60 414	65 448	_	-	20 138	25 172	15 15	20 20	_	
C86500	S, CL	M01, M02 (SAE -A)	65 448	71 490	27 187	29 200	25 172	28 193	20 20	30 30	_	
C86500	C	M07 (SAE -B)	70 483	-			25 172		25 25		_	
C86700	S	M01	80 552	85 586	32 221	42 290		_	15 15	20 20	HR80B	
C86800	S	M01	78 538	82 565	35 241	38 262	_	-	18 18	22 22		
C87300	S, CL	M01, M02	45 310	55 379	18 124	25 172	5 <u>-</u> 8 2 <u>-</u> 1	-	20 20	30 30	:	
C87400	S, CL	M01, M02	50 345	55 379	21 145	24 165	2 <u></u> 1	-	18 18	30 30		
C87500	S, CL	M01, M02	60 414	67 462	24 165	30 207	0 <u></u> r	-	16 16	21 21		
C87600	S	M01	60 414	66 455	30 207	32 221	-	_	16 16	20 20	HR76B	
C87610	-	-	_	-	_	_	-	-		_	_	
C87800	D	M04	_	85 586	-	-	=	50 345	-	25 25	HR85B	
C90200	S	M01	_	38 124	-	16 110	_		_	30 30		
C90300	S, CL	M01, M02	40 276	45 310	18 124	21 145	_	-	_	30 30	_	
C90300	С	M07 (SAE -B)	44 303	-	22 152	-	=	_	18 18			
C90500	S, CL	M01, M02 (SAE -A)	40 276	45 310	18 124	22 152	Ξ		20 20	25 25	-	
C90500	С	M07 (SAE -B)	44 303		25 172	-	_	=	10 10		_	
C90700	S	M01 (SAE -A)	35 241	44 303	18 124	22 152	-	-	10 10 10	20 20	_	
C90700	CL, PM	M02, M05	-	55 379		30	_	_	- -	16 16		
				3/9		207 gend: Casi	ting Process		_	10		

		Legend: Casting Pro	Cesses
its	S = Sand D = Die	C = Continuous I = Investment PM = Permanent Mo	CL = Centrifugal P = Plaster old

	500 kg 3,000 kg Strem ksi MPa		ShearCompressive StrengthStrength0.1% Set1.0% Set10.0%ksiksiksiksiMPaMPaMPaMPa			Impac Izod ft-Ib J	t Strength at Charpy V-Notch ft-Ib J	68 F (20C) Charpy Unnotched ft-lb J	Fatigue Strength ksi MPa	UNS Number
75HB	() 		_		_		. <u>—</u>			C85700
102HB	_	-	_	_	_	-	_	40 54	-	C85800
_	180HB	-	50 345	_		12 16			_	C86100
_	180HB		50 345	_	-	12 16		_	_	C86200
_	225HB	-	60 414		97 669	15 20		_	25	C86300
_	_	_		_	_	_	(-	172	C86300
_	-	_	-	-	_	_	_	_	_	C86300
90HB	105HB	_	22	-	87	30	25	-	_	C86400
100HB	130HB	_	152 24	35	600 79	41	34 32	_	20	C86500
_	(1 	1. 	166 —	241	545 —	_	43 —	-	138 —	C86500
-	155HB	-	_	_	— —	-	_	_	_	C86700
_	80HB	-		_	_	-		_		C86800
85HB		28		_	60	33		_	-	C87300
70HB	100HB	193 — —	124 		414 	45 	40	-	— —	C87400
115HB	134HB		27		75	—	54 32		22	C87500
110HB	135HB	_	186 —		517 60	_	43 —	_	152 —	C87600
_	_	_	-	_	414 	_	_	-	-	C87610
-		_			_		-	70		C87800
70HB	_	_	_	_			_	95	25	C90200
70HB		=		-	-	_	— 14 19	-	172	C90300
-	-	-	90 —	-	=	=	-	2 11	_	C90300
75HB	-	Ξ	—	40 276	-	— 10 13	-		13 90	C90500
-	<u></u> .	-	-		()		-	-	-	C90500
80HB	_	_	_	_	_	_	_	_	25 172	C90700
_		_	_	_	_	_		-	172 — —	C90700
	ALCONTRACTOR									

NS umber	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum	Strength Typical	0.5% Ext Minimum		0.2% Minimum	Offset Typical	% Elor Minimum	ngation Typical	Rockwell Hardness	
			ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	in 2 inches in 51 mm	in 2 inches in 51 mm		0.30
0700	C	M07	40	<u></u>	25	· <u> </u>	1. 	-	2 <u></u> 3	10	_	
	1200	(SAE -B)	276		172	-	-		10	-		
90710	-	-	_		-	_		_	-	-	_	
90800	_	_			_	_		_		_	_	
				—		-	-			—		
90810	-	-	—	-	-	-	-	_	-	-	_	
90900	S	M01		40	_	20	_	_	×—)	15	_	
130300	0		-	276		138	<u> </u>			15		
91000	S	M01	30	32		25		-	1	2	-	
01100	c	M01	207	221 35	-	172	-		1			
91100	S	M01		241		25 172	_	-) (2 2	-	
91300	S	M01	()	35	-	30	-	_	;	0.5	_	
			-	241		207				0.5		
91600	S	M01	35 241	44 303	17 117	22 152	-	_	10 10	16 16		
91600	CL, PM	M02, M05	45	60	25	32	_	_	10	16		
			310	414	172	221	-	-	10	16		
91700	S	M01	35 241	44 303	17 117	22 152		_	10 10	16 16	_	
91700	CL, PM	M02, M05	50	60	28	32	_			16	_	
1999) T.T.			345	414	193	221		tat a Stat	12 12	16		
92200	S, CL	M01, M02 (SAE -A)	34 234	40 276	16 110	20 138	_	_	24 24	30 30	_	
92200	С	(SAE -A) M07	38	270	19	130	_	_	18	30	_	
52200	U	(SAE -B)	262	-	131	-		-	18			
92300	S, CL	M01, M02	36	40	16	20	0	-	18	25	_	
00000	0	(SAE -A) M07	248	276	110	138	-	- 10 10 10	18	25		
92300	С	(SAE -B)	40 276		19 131	-	_	<u> </u>	16 16	_	and the second se	
92310	_	-	_	-	-	—		-	_	,);		
				-	2 - 2		-		1999 - 19			
92400				-		-	Ξ	_			O PARTICIPATION	
92410	_	_	2. 	-	-			_	_	2 2		
				1000					1956) - 1 . (*			
92500	S	M01 (SAE -A)	35 241	44 303	18 124	20 138	=		10 10	20 20		
92500	С	M07	40		24		;		10		_	
	5.5118	(SAE -B)	276		166				10			
92600	S	M01	40 276	44 303	18 124	20 138	_		20 20	30 30	HR78F	
92610			270	303	124	130	_		20	30	_	
52010	4									-		
92700	S	M01	35	42	18	21	-		10	20	-	
00765	0	(SAE -A)	241	290	124	145			10	20		
92700	C	M07 (SAE -B)	38 262	_	20 138	-		-	8	_		

I = Investment PM = Permanent Mold

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

UNS Number	Fatigue Strength ksi	68 F (20C) Charpy Unnotched ft-lb	t Strength at Charpy V-Notch ft-Ib	Impac Izod ft-Ib	10.0% Set	ressive Stren 1.0% Set	Comp 0.1% Set ksi	Shear Strength	Hardness II Indicator 3,000 kg	
	MPa	J	IT-10	n-ib J	ksi MPa	ksi MPa	MPa	ksi MPa		
C90700	-	<u>—</u>	_	_))	_	-	_	-	_
C90710	_	-		-	5. 	_	-	_	_	_
	-	—		-	-	-		- 1999 - 1999		
C90800			_				-		-	
C90810	_	_	_	_	_	_	_	-	-	_
C90900	-	-	_		_	-	_	_	_	90HB
C91000	-	_	_	: 	_	_	_	_	_	105HB
C91100	_	_		_	_	_	-	_	135HB	
	_			—		-			Toonb	
C91300		_	_	_	<u> </u>	-	_	_	170HB 160HB ⁽²⁾	
C91600	_	_		_		: 	_	_	_	85HB
C91600	_		_	-	-	-		_	_	65HB ⁽²⁾ 106HB
C91700	_	_		_	_	-	_		_	95HB ⁽²⁾ 85HB
031700		((dec.))			<u> </u>	-				65HB ⁽²⁾
C91700			_	— —		—	-	-	-	106HB 95HB ⁽²⁾
C92200	11	10	19	-	38	20	15	_	_	65HB
	76	4. 	26		262	140	103			
C92200			-	-		_	_	—	-	A STATE OF COMPANY
C92300		1		12 16	35 241	=	10	-	_	70HB
C92300	_			10	241	_	69			_
092000			—		==	-	-	<u> </u>		
C92310	-	=	Ξ	Ξe	-	_	_	Ξ	_	_
C92400	17	_				- 19		27	_	
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				diame.			
C92410								19-19- /610		
C92500			-			-			_	80HB
C92500	_	-	<u> </u>	-			_			-
C92600	-		-	7		-		-		70HB
			-	9	276	Ę	12 83			7010
C92610		=	-			_		-		
C92700	2 <u></u> 2	-	_	-	-			-	-	77HB
C92700	_	-	_	_	-	<u></u>		_	-	
				-		-	-			

	Process	Temper, (SAE Suffix) ⁽¹⁾	Minimum	Strength Typical	0.5% Ext Minimum	Yield Str tension Typical	0.2% Minimum	Offset Typical	% Elor Minimum	ngation Typical	Rockwell Hardness	
			ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	in 2 inches in 51 mm	in 2 inches in 51 mm		
92710				-		-		-				
92800	S	M01		40 276	-	30 207	-	-	-	1	HR80B	
92810	_	-	 			-		_	-	-		
92900	S, PM, C	M01, M05, M07	45 310	47 324	25 172	26 179	-	=	8	20 20		
93100	-	-	-	-	-	-	-	-	-	-		
93200	S, CL	M01, M02 (SAE -A)	30 207	35 241	14 97	18 124	-	_	15 15	20 20		
93200	С	M07 (SAE -B)	35 241	_	20 138		-		10 10	-		
93400	S	M01	25 172	32 221	12 83	16 110		-	8 8	20 20	-	
93500	S, CL	M01, M02 (SAE -A)	28 193	32 221	12 83	16 110			15 15	20 20	-	
93500	С	M07 (SAE -B)	30 207	-	16 110	-			12 12	-	<u></u>	
93600		_	_			_	_	_	_	_	_	
93700	S, CL	M01, M02 (SAE -A)	30 207	35 241	12 83	18 124	_	16 110	15 15	20 20		
93700	С	M07 (SAE -B)	35 241	-	20 138	-		7 <u>—</u> -	6	_		
93700	С	M07 (SAE -C)	40 276	=	25 172	_	_	_	6 6	-	_	
93720	-	-	-	_	-	_		_	_	-	_	
93800	S, CL	M01, M02	26 179	30 207	14 97	16 110	-	_	12 12	18 18	-	
93800	CL	M02 (SAE -A)	-	33 228	-	20 138	-	-	_	12 12	_	
93800	С	M07 (SAE -B)	25 172	=	16 110	_	-	_	5	_		
C93900	С	M07	25 172	32 221	16 110	22 152	-	—	5 5	7 7	_	
C94000	-	_	_		. <u> </u>	-		_			_	
94100	-		_	_	_	_	_	_	_	_	_	
94300	S	M01	24 166	27 186	_	13 90	_	_	10 10	15 15	_	
94300	S, CL	M01, M02 (SAE -A)	21 145		_	-	=	_	10 10		_	
94300	С	M07 (SAE -B)	21 145	_	15 103	-	=	Ξ	7 7	-	_	
094310	-		-	_		-	_	_	_	_	_	
							ing Process					

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

	Hardness Il Indicator 3,000 kg	Shear Strength	Comp 0.1% Set	oressive Strei 1.0% Set	ngth 10.0% Set	Impac Izod	ct Strength a Charpy V-Notch	t 68 F (20C) Charpy Unnotched	Fatigue Strength	UNS Number
		ksi MPa	ksi MPa	ksi MPa	ksi MPa	ft-lb J	ft-Ib J	ft-lb J	ksi MPa	
_		-	Ţ		-	-	-	-	-	C92710
_	_	_	_	_	_	_	_	_	_	C92800
		-	-	-	-	-	-	-	-	
				_	_	-	-		_	C92810
80HB 75HB ⁽²⁾	_	=	Ξ	-	50 345	12 16	_	-	_	C92900
_	_	_	_	_	_	_	_	_	-	C93100
ocup					-	-	-		-	000000
65HB				_	46 317	6 8	_	-	16 110	C93200
	_	-		-	-	_	_	-	-	C93200
60HB	_	_	-	_	48 331	5	_	-	15 103	C93400
60HB		_	13 90	_	-	-	8 11	_		C93500
Manual Inc.		_		_	_	-	_	_	-	C93500
	_	_)) /7,	-	_	-	_	_	_	C93600
60HB	_	18 124	13 90	_	47 324	5 7	11 15	_	13 90	C93700
_	-		2	-	_	-	_			C93700
-	_	_	1 	-	_	_		_	_	C93700
_	_	- 199 -	—	-	_	_	—	_	_	C93720
		-	2 5(4)	-	-	-				030720
55HB		15 103	12 83	_	38 262	5 7		_	10 69	C93800
	-	_	19 131	_	-	=	=	Ξ	_	C93800
	-	-	_	-	-	-	-	_	-	C93800
63HB	_	_		-		_	0 <u></u> -			C93900
_	_	_		_	_	_	_	_	_	C94000
			4	-		-				
	C 14 1 1 1 1 2	-		-			Ξ		-	C94100
48HB		-	11 76	-	23 159	5 7	_			C94300
_	-	-	-	-	=	-	_	Ξ	-	C94300
-	-	_	_	_	-	-	_	_	<u>11-11-1</u> 17-11-1	C94300
_	_		-	-	_	_		-	-	C94310
		-		-		-	-			

JNS lumber	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum	Typical	0.5% Ext Minimum	Typical	0.2%	Offset Typical	Minimum	ngation Typical	Rockwell Hardness	
			ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	in 2 inches in 51 mm	in 2 inches in 51 mm		
94320		-	_		_	-					 	
94330	10000		_	_	_	-	_					
94400	S	M01	-	32 221		16 110	-	_		18 18	() 	
94500	S	M01	_	25 172	_	12 83	_		-	12 12		
94700	S, C	M01, M07 (SAE -A)	45 310	50 345	20 138	23 159	_	_	25 25	35 35		
94700	S, C	TX00 (SAE -B)	75 517	85 586	50 345	60 414		-	5 5	10 10		
94800	S, C	M01, M07	40 276	45 310	20 138	23 159	-		20 20	35 35		
94800	S	ТХ00	_	60 414	_	30 207		_	_	8	_	
94900	-		_	_	_			-	-	_	_	
95200	S, CL	M01, M02 (SAE -A)	65 448	80 552	25 172	27 186		-	20 20	35 35	HR64B	
95200	C	M07 (SAE -B)	68 469	-	26 179	Ξ		_	20 20	_	_	
95210		_	_	-		_	-	_	_	_	_	
95220				_	-	-		_	-	_	()	
95300	S, CL	M01, M02 (SAE -A)	65 448	75 517	25 172	27 186		-	20 20	25 25	HR67B	
95300	C	M07 (SAE -B)	70 483	-	26 179	-	-	=	25 25	- 	-	
95300	S, CL, C	TQ50 (SAE -C)	80 552	85 586	40 276	42 290	-	-	12 12	15 15	HR81B	
95400	S, CL	M01, M02 (SAE -A)	75 517	85 586	30 207	35 241	-	-	12 12	18 18	-	
95400	C	M07 (SAE -B)	85 586	_	32 221	-	-	=	12 12	-	-	
95400	S, CL	TQ50 (SAE -C)	90 621	105 724	45 310	54 372	-	=	6	8 8	-	
95400	C	TQ50 (SAE -D)	95 655		45 310		-	Ξ	10 10		(7 <u></u> 19 17 <u></u> 19	
95410	S	M01		85 586	-	35 241	-	Ξ	_	18 18		
95410	S	TQ50		105 724		54 372	-		_	8	_	
95420	-	_	-		_		-	=	-		_	
95500	S, CL	M01, M02 (SAE -A)	90 621	100 690	40 276	44 303	-		6 6	12 12	HR87B	
95500	C	M07 (SAE -B)	95 665		42 290		=	-	10 10		_	

CL = Centrifugal

P = Plaster

C = Continuous I = Investment PM = Permanent Mold

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

Unshaded areas = standard U.S. units	S = Sand
Shaded areas = metric units (SI)	D = Die

	Brinell Hardness 10-mm Ball Indicator 500 kg 3,000 kg	Shear Strength	Comp 0.1% Set	ressive Strer 1.0% Set	ngth 10.0% Set	Impao Izod	ct Strength a Charpy V-Notch	t 68 F (20C) Charpy Unnotched	Fatigue Strength	UNS Number
		ksi MPa	ksi MPa	ksi MPa	ksi MPa	ft-lb J	ft-lb J	ft-lb J	ksi MPa	
	<u>-</u>		=	-	_	-	Ξ		=	C94320
-	<u></u>	-	<u>—</u>	_	Ξ	-	-	-	-	C94330
55HB		16 110	_	-	44 303	5	_		11 76	C94400
50HB	_	13 90		-	36 248	4	_	-	10 69	C94500
85HB	_	38 262	_	-		85 115	-	-	14 97	C94700
_	180HB	65 448	—	-	-	110 149			14 97	C94700
80HB		<u></u>	_	_	_	_		_	12	C94800
120HB		_	-	_		_	8 <u></u> 1	_	83 12	C94800
-	_		_	_	_	_	_	<u> </u>	83	C94900
_	125HB		27	_		30	30	20(4)	22	C95200
		276	186	_	483	41	41	27(4)	152	C95200
	_	-		_	_	-			-	C95210
-	_	_	_	_	_	_	_		-	C95220
_	140HB	41	20	_	83	28(5)		-	22	C95300
_		283	138	_	572	38(5)	31(6)		152	C95300
	174HB	46		-			-	27(4)	- 27	C95300
		317 47	241	199 4 999	100	621 16		37 ⁽⁴⁾ 11 ⁽⁴⁾	186 28	C95400
	170HB	324	_	_	690	22		15(4)	193	
CALCULATION OF				-	-		-		-	C95400
	195HB	50 345	_	_	120 827	11 15 ⁽⁴⁾	-	7 ⁽⁴⁾ 9	35 241	C95400
			-	-	-		-		-	C95400
_	170HB	47 324	_	-	100 690	—	-	_	=	C95410
_	195HB	50 345		-	120 827		-	_		C95410
-	_	-	=	-	-	_	-	-	=	C95420
	195HB	48 331		-	120 827	13 18	-	10 ⁽⁴⁾ 14 ⁽⁴⁾	31 214	C95500
		-		-	-	=	_	-	-	C95500

Number P C95500 S C95510 -	Casting Process S, CL	Temper, (SAE Suffix) ⁽¹⁾	Tensile S Minimum ksi MPa	Typical ksi	0.5% Ext Minimum	Typical	Minimum	Offset	Minimum	ngation Typical	Rockwell Hardness	
C95510 -		T050		kei			minimum	Typical	minimum	Typical	naturess	
C95510 -		T050		MPa	ksi MPa	ksi MPa	ksi MPa	ksi MPa	in 2 inches in 51 mm	in 2 inches in 51 mm		
C95510 -			110	120	60	68		_	5	10	HR96B	_
		(SAE -C)	758	827	414	469		-	5	10	IIII	
	_	_	_	_		_	_	-	-	-	_	
C95520 -			-	-		-	-	-	-	-		
	_	-	-		-	_	_	-	-	-		
			-	-	-	-		(<u>—</u>	-	—		
C95600 S	S	M01	60 414	75 517	28 193	34 234	_	_	10 10	18 18	_	
C95700 S	s	M01	90	95	40	45	_	_	20	26	-	
		ino i	621	655	276	310			20	26		
C95710 -	_	_	-	_	-	_	-	-	-	_		
		-	-	-	-		— — (A)	. <u></u>	-			
C95800 S	S, CL	M01, M02	85	95 655	35	38	—	_	15 15	25 25	_	
005000	0	(SAE -A)	586		241	262	-					
C95800 (С	M07 (SAE -B)	90 621	-	38 262	_	-	_	18 18	_	_	
C95810 -	_		_	_	_	_	_	_	_	-	-	
				-	-	-		-		-		
C95900 -	<u> </u>	_	_	_	-	—	-	_	-	_	-	
				-	—	-	—		-			
C96200	S	M01	45	-	25	.—.		_	20	. <u> </u>	_	
			310		172	-		-	20			
C96300 S	S	M01	75 517	-	55 379	_	_	_	10 10	_		
C96400 S	S	M01	60	68	32	37	_	_	20	28	_	
		ino i	414	469	221	255		-	20	28		
C96600	S	TB00	-	75		38			_	12	HR74B	
			1992 199	517		262				12		
C96600	S	TF00		120		75	-			12	HR24C	
			_	827		517	-			12		
C96700 -		-	-	_	-	_	-		-			
C96800 -	_		_	_	_	_	_		_	_	_	
				-	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	3 7	-	-		-		
C96900 -		-		_	-	(),	-	s 	-			
					10 6 0 		-	a 	-	-		
C97300 S	S	M01	30 207	35 241	15 103	17 117	-		8	20 20		
C97400	S	M01	30	38	16	17				20		
J97400 3	0	WOT	207	262	110	117		— —	8	20		
C97600 S	S	M01	40	45	17	24	_	<u> </u>	10	20		
	11.13		276	310	117	165			10	20		
C97800	S	M01	50	55	22	30			10	15		
			345	379	152	207	-		10	15		
C98200 -	-	-	-	_		_	_	— —	=	Ξ		
C98400 -	_	_		_		_						
130400			-	Ξ.	-	-	-	1 				
C98600 -	_	-	_	-	_	_	_	_	_	_	_	
				-		-		. <u></u> 6		-		

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

	Legend: Casting Processes
Unshaded areas = standard U.S. units Shaded areas = metric units (SI)	S = Sand C = Continuous CL = Centrifugal D = Die I = Investment P = Plaster PM = Permanent Mold

	Hardness all Indicator 3,000 kg	Shear Strength	Comp 0.1% Set	oressive Stre 1.0% Set	ngth 10.0% Set	Impac Izod	t Strength a Charpy V-Notch	t 68 F (20C) Charpy Unnotched	Fatigue Strength	UNS Number
		ksi MPa	ksi MPa	ksi MPa	ksi MPa	ft-lb J	ft-lb J	ft-lb J	ksi MPa	
	230HB	70 483	-	-	150 1,034	15 20		-	38 262	C95500
_	-	_	-	_	_	-	=	_	_	C95510
		_	_		_	-	_	.—.	— —	C95520
	1 10110		1993) - 1993			-	in the second se	—		005000
	140HB		_	_	-	_		=	=	C95600
_	180HB		-	=	150 1,034	20 27	30 41	-	33 228	C95700
<u> </u>		-		—		_	_	-	-	C95710
				—		—		<u> </u>		
	159HB	58 400			100 690	20 27	16 22	10 ⁽⁶⁾ 14 ⁽⁶⁾	31 214	C95800
-		-	-	=	-	=	=	=	_	C95800
-	-		-	-	-	H	-	_	=	C95810
-	-		=	—	_	-	_	-	—	C95900
_	_		_	-	37	_	— 100	-	— 13	C96200
				-	255		136		90	030200
150HB	-		-	=	-	_	-	-	=	C96300
140HB	_	-	-	-	_	Ξ	78 106	-	18 124	C96400
_	· <u>·</u> ···	_	_	_	_	_			-	C96600
			- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	<u> </u>			-	<u> </u>		
		-		_	-	-	<u></u>			C96600
	·	_	_	_	-	_	-	-	-	C96700
	-	-		_	-	_		_	-	C96800
			_	_	_	_				C96900
55HB			_	-	_	_		_	_	C97300
						-	-		<u> </u>	
70HB		_				_	-	_	_	C97400
80HB	_		 	30 207	57 393	_	11 15	-	16 110	C97600
_	130HB	-		·		_	_	_	_	C97800
	-	_	_	_	_	_	_	_		C98200
		1. The <u>-</u> 11 T			<u> </u>	-	-			
	_	_	_	-	_	_	-	_	_	C98400
	_	_	-	_	-	_	-	_	<u> </u>	C98600

						Yield Str	ength					
UNS	Casting	Temper,	Tensile S		0.5% Ext			Offset		ngation	Rockwell	
Number	Process	(SAE Suffix)(1)	Minimum	Typical	Minimum	Typical	Minimum	Typical	Minimum	Typical	Hardness	
			ksi	ksi	ksi	ksi	ksi	ksi	in 2 inches	in 2 inches		
			MPa	MPa	MPa	MPa	MPa	MPa	in 51 mm	in 51 mm		
C98800		3 	_	—		-	_	-	·		-	
				-	-		-	-				
C98820	_	_	_	_	_	-	_	_	()/	_	_	
030020		-				-						
C98840												
690040	-		-	_		_	_	-		-	_	
C99300	S	M01	_	95 655	_	55 379		Ξ		2 2	-	
			and the state of the	000		319	2.0000			2		
C99350		2 	_	() 			-	—			-	
			n a ge r an a s			-	<u></u> 1	-				
C99400	S	M01	60	66	30	34	_		20	25	-	
000000000000000000000000000000000000000			414	455	207	234	1 	11. - 1 1	20	25		
C99400	S	TF00	_	79	—	54	-		()	_		
0.001.001			- 10 ATT	545		372		-	2011212 -3 4113			
C99500	S	M01	70	<u> </u>	40	_	_		12		_	
			483	-	276	-	-	-	12			
C99500	S	TF00	-	86	_	62	_	_	_	8	_	
099000	3	1100	_	593	-	427	_			8	_	
000000												
C99600					-	_	_	_		_	_	
			And		-				6 6 6 6 6 1 8	-		
C99700	S	M01		55	-	25	2	-	1 	25	-	
			1.1	379		172				25		
C99700	D	M04		65	17	27			-	15		
				448		186	-	-		15		
C99750	S	M01	_	65	()	32			_	30	HR77B	
				448	-	221			-	30		
C99750	S	TQ50	_	75		40	_			20	HR82B	
000700		1400	-	517	—	276	-	(****)		20	THOED	

TABLE 3. Typical Mechanical Properties of Copper Casting Alloys \continued

Footnotes

(1) SAE Suffix

For alloys listed under SAE J462, suffix symbols may be specified to distinguish between two or more sets of mechanical properties, heat treatment, conditions, etc., as applicable.

Most commonly used method of casting is shown for each alloy. However, unless the purchaser specifies the method of casting or the mechanical properties by supplement to the UNS Number, the supplier may use any method which will develop the properties indicated. These suffixes are shown in the shaded areas below the temper designations.

See Society of Automotive Engineers Inc., SAE Handbook, Vol. 1, Materials, Warrendale, PA, 1989.

- (2) Minimum value
- (3) As cast and spinodal hardened
- (4) Charpy Keyhole
- (5) As cast and annealed
- (6) Charpy Keyhole, properties as cast and annealed

S = Sand	C = Continuous	CL = Centrifugal
D = Die	I = Investment	P = Plaster

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

UNS	Fatigue	Charpy	t Strength at Charpy		gth	ressive Strer	Comp	Shear		10-mm Ba
Number	Strength ksi MPa	Unnotched ft-lb J	V-Notch ft-lb J	lzod ft-lb J	10.0% Set ksi MPa	1.0% Set ksi MPa	0.1% Set ksi MPa	Strength ksi MPa	3,000 kg	500 kg
C9880		_		_	3 — 3		-			-
				110 2 1 1	-	-				
C9882	-	-	-	-		_		-	-	_
C9884	-	_	_	_	_	_	_	_	_	_
05004			1927 - 1 927	-	-					
C9930		_	4	_	_	_		_	200HB	_
		-	5		1	-	. <u> </u>			
C9935	_		-	_		_	5 	_		
		bai n d prim	-							
C9940		_		-	—		(. 	48	125HB	
	0.00 - 08100	-		-		_		331		
C9940						-		_	170HB	1
00050									50HB	145HB
C9950			_	_	_	_			SOUR	14508
C9950	_	_	_	_		_	_	_	196HB	_
			-		=				Toons	
C9960					_					1
			-							
C9970	-		1000 V	_	-	1000	_		110HB	
		—		-	-					
C9970	-	_		_				_	125HB	
					the states and the					
C9975	19 131		75 102	_	72 496	38 262	28 193			110HB
C9975										119HB
03975		1000 (<u>100</u> 0 (1000)		_		=				11900

UNS Number		ng Point 1 Liquidus	Density	Coeffici	ient of Therm	al Expansion	Specific Heat	Thermal Conductivity	Electrical Conductivity	Electrical Resistivity	Elastic Modulus
	°F °C	° F ° C	lb/in ³ at 68 F g/cm ³ at 20 C	68–212 F, 10 ⁻⁶ per °F 20–100 C, 10 ⁻⁶ per °C	68–392 F, 10 ⁻⁶ per °F 20–200 C, 10 ⁻⁶ per °C	68–572 F, 10 ⁻⁶ per °F 20–300 C, 10 ⁻⁶ per °C	Btu/Ib/° F at 68 F J/kg • °K at 293 K	Btu/ft ² /ft/h/° F at 68 F W/m • ° K at 293 K	% IACS at 68 F Megmho/cm at 20 C	ohms-cmil/ft at 68 F nΩ•m at 20 C	ksi MPa
C80100	1,981	1,948	0.323		— —	9.4 16.9	0.092 385	226 391	100 0.580	10.4	17,000 117,000
C81100	1,981 1,083	1,948	0.323 8.94	_	-	9.4	0.090	200 346	92 0.534	11.3 18.7	17,000
C81200		·	0.323	-		9.4				()	
C81400	2,000 1,093	1,950 1,066	0.318 8.80	_	-	16.9 10.0 18.0	0.093	150 259			
C81500	1,985 1,085	1,967	0.319 8.82	_	-	9.5 17.1	0.09	182 315	82 0.476	12.6 21.0	16,500 114,000
C81540	-		— —	-	_	— —					
C82000	1,990 1,088	1,780 971	0.311 8.62	_	-	9.9 17.8	0.10 419	150 259	45 0.260	23.1 38.5	17,000 117,000
82200	2,040	1,900	0.316 8.75	-	9.0 16.2	-	0.10	106	45 0.261	23.0 38.3	16,500 114,000
82400	1,825	1,650	0.304 8.41		9.4 16.9		0.10	76.9 133	25 0.144	41.8 69.4	18,500
82500	1,800 982	1,575 857	0.302 8.35	:	9.4 16.9		0.10 419	74.9 130	20 0.116	51.6 86.2	18,500 128,000
82510	_		_	—	_	-			_		
82600	1,750 954	1,575 857	0.302 8.35	_	9.4 16.9	=	0.10 419	73.0 126	19 0.110	54.7 90.9	19,000 131,000
82700	1,750 954	1,575 857	0.292	-	9.4 16.9	_	0.10 419	74.9 130	20 0.115	52.3 87.0	19,100 132,000
82800	1,710 932	1,625 885	0.294 8.14		9.4 16.9	_	0.10 419	70.8 123	18 0.104	57.8 96.2	19,300 133,000
83300	1,940 1,060	1,886 1,030	0.318 8.80	-		-	0.09 377	_	32 0.186	32.3 53.8	15,000 103,000
83400	1,910 1,043	1,870 1,021	0.318 8.80	·	_	10.0 18.0	0.09 377	109 188	44 0.256	23.5 39.1	15,000 103,000
83450	_	_		—		-	_	_	-		-
83500		_	_	-		_			-	-	_
83600	1,850 1,010	1,570 854	0.318 8.83	-	10.0 18.0		0.09 377	41.6 72.0	15 0.087	69.1 114.9	13,500 93,100
83800	1,840 1,004	1,550 843	0.312 8.64	-	10.0 18.0		0.09 377	41.8 72.4	15 0.087	69.1 114.9	13,300 91,700
83810		_	-	-		_	_	_	_	_ _	_
84200	1,820 993	1,540 838	0.311 8.61	2 	10.0 18.0		0.09 377	41.8 72.4	16 0.095	63.3 105.3	14,000 96,500
84400	1,840 1,004	1,549 843	0.314 8.69	—	-	10.0 18.0	0.09 377	41.8 72.4	16 0.095	63.3 105.3	13,000 89,600
84410		<u></u>						<u>-</u> 1919 4 1919	-	=	
84500	1,790 977	1,540 838	0.312 8.64		-	10.0 18.0	0.09 377	41.6 72.0	16 0.096	62.7 104.2	14,000 96,500
84800	1,750 954	1,530 832	0.310 8.58		10.0 18.0	_	0.09 377	41.6 72.0	16 0.095	63.3 105.3	15,000 103,000
85200	1,725 941	1,700 927	0.307 8.50	11.5 20.8		-	0.09 377	48.5 83.9	18 0.104	57.8 96.2	11,000 75,800

Unshaded areas = standard U.S. units <mark>Shaded areas = metric units (SI)</mark>

NS umber		ıg Point Liquidus	Density	Coeffic	ient of Therm	al Expansion	Specific Heat	Thermal Conductivity	Electrical Conductivity	Electrical Resistivity	Elastic Modulus
	°F °C	°F °C	lb/in ³ at 68 F g/cm ³ at 20 C	68–212 F, 10 ⁻⁶ per °F 20–100 C, 10 ⁻⁶ per °C	68–392 F, 10 ⁻⁶ per °F 20–200 C, 10 ⁻⁶ per °C	68–572 F, 10 ⁻⁶ per °F 20–300 C, 10 ⁻⁶ per °C	Btu/Ib/° F at 68 F J/kg • °K at 293 K	Btu/ft ² /ft/h/°F at 68 F W/m • °K at 293 K	% IACS at 68 F Megmho/cm at 20 C	ohms-cmil/ft at 68 F nΩ•m at 20 C	ksi MPa
85400	1,725 941	1,700 927	0.305 8.44	11.1 20.0	-		0.09 377	50.8 87.9	20 0.113	53.2 88.5	12,000 82,700
35500	1,652 900	1,634 890	0.304	11.8 21.3		_	0.09 377	67.0 116	26 0.151	39.8 66.2	15,000
85700	1,725 941	1,675 913	0.304	-	_	12.0 21.6	0.09 377	48.5 83.9	22 0.128	47.0 78.1	14,000 96,500
35800	1,650 899	1,600 871	0.305	_	_	-	0.09	48.5 83.9	20 0.116	51.9 86.2	15,000
36100	1,725 941	1,650 899	0.288		Ξ	12.0 21.6	0.09	20.5 35.5	8 0.044	136.7 227.3	15,000
86200	1,725 941	1,650 899	0.288		Ξ	12.0 21.6	0.09 377	20.5 35.5	8 0.044	136.7 227.3	15,000
86300	1,693 923	1,625 885	0.283	-	-	12.0 21.6	0.09 377	20.5 35.5	8 0.046	130.8 217.4	14,200 97,900
86400	1,616 880	1,583 862	0.301 8.33		11.0 19.8	_	0.09 377	51.0 88.3	19 0.111	54.2 90.1	14,000 96,500
86500	1,616 880	1,583 862	0.301 8.33	11.3 20.4	_	-	0.09 377	49.6 85.8	22 0.128	47.0 78.1	15,000 103,000
36700	1,616 880	1,583 862	0.301 8.33		11.0 19.8		0.09 377		17 0.097	62.0 103.1	15,000 103,000
86800	1,652 900	1,616 880	0.290	_	-		0.09 377		9 0.052	115.7 192.3	15,000 103,000
37300	1,780 971	1,580 860	0.302	in an	_	10.9 19.6	0.09 377	16.4 28.4	6 0.035	171.9 285.7	15,000 103,000
37400	1,680 916	1,510 821	0.300 8.30	<u></u>		10.9 19.6	0.09 377	16.0 27.7	7 0.039	154.2 256.4	15,400 106,000
37500	1,680 916	1,510 821	0.299 8.28	-	_	10.9 19.6	0.09 377	16.0 27.7	7 0.039	154.2 256.4	15,400 106,000
37600	1,780 971	1,580 860	0.300 8.30	_	-	_	0.09 377	16.4 28.4	6 0.035	132.2 230.1	17,000 117,000
37610	_				1 	_				-	8 — 4
87800	1,680 916	1,510 821	0.300 8.30	-	T	10.9 19.6	0.09 377	16.0 27.7	7 0.039	154.2 256.4	20,000 138,000
90200	1,915 1,046	1,608 876	0.318 8.80			10.1 18.2	0.09 377	36.0 62.3	13 0.075	80.2 133.3	16,000 110,000
90300	1,832 1,000	1,570 854	0.318 8.80	_	10.0 18.0	-	0.09 377	43.2 74.8	12 0.069	87.2 144.9	14,000 96,500
90500	1,830 999	1,570 854	0.315 8.72	-	-	11.0 19.8	0.09 377	43.2 74.8	11 0.064	94.0 156.3	15,000 103,000
90700	1,830 999	1,528 831	0.317 8.77	— —	10.2 18.4		0.09 377	40.8 70.6	10 0.056	107.4 178.6	15,000 103,000
90710	_	<u> </u>		-			-	-			-
90800	-		_	r <u> </u>				-		<u>-</u>	-
90810	· _	, <u></u> ; ; <u></u> ;	_	_	-	_	_		_	-	
90900	1,792 978	1,505 818	<u> </u>	_	_ 		0.09 377	.—. 1	. <u></u> -	_	16,000 110,000
91000	1,760 960	1,505 <mark>818</mark>	-	-		_	0.09 377		9 0.054	111.4 185.2	16,000 110,000
91100	1,742 950	1,505 818		=		-	0.09 377		8 0.049	122.8	15,000 103,000

Unshaded areas = standard U.S. units <mark>Shaded areas = metric units (SI)</mark>

UNS Number		ng Point 1 Liquidus	Density				Specific Heat	Thermal Conductivity	Electrical Conductivity	Electrical Resistivity	Elastic Modulus
	۰F	° F	lb/in ³ at 68 F g/cm ³	68–212 F, 10 ⁻⁶ per °F 20–100 C,	68–392 F, 10 ⁻⁶ per °F 20–200 C,	68–572 F, 10 ⁻⁶ per °F 20–300 C,	Btu/lb/° F at 68 F J/kg • °K	Btu/ft ² /ft/h/° F at 68 F W/m • ° K	% IACS at 68 F Megmho/cm	ohms-cmil/ft at 68 F nΩ • m	ksi
	°C	°C	at 20 C	10 ⁻⁶ per °C	10 ⁻⁶ per °C	10 ⁻⁶ per °C	at 293 K	at 293 K	at 20 C	at 20 C	MPa
1300	1,632 889	1,505 818	-	-	-	-	0.09 377	_	7 0.040	150.4 250.0	16,000 110,000
1600	1,887 1,031	1,575 857	0.320 8.87	-	9.0 16.2	_	0.09 377	40.8 70.6	10 0.058	103.7 172.4	16,000 110,000
1700	1,859	1,563 851	0.316 8.75	_	9.0 16.2	 	0.09	40.8 70.6	10 0.058	103.7 172.4	15,000 103,000
2200	1,810 988	1,518 826	0.312 8.64	-	-	10.0 18.0	0.09	40.2 69.6	14 0.083	72.5 120.5	14,000 96,500
2300	1,830 999	1,570 854	0.317 8.77		10.0 18.0		0.09	43.2 74.8	12 0.070	85.9 142.9	14,000 96,500
92310	-	-	1	-	-	Ξ			-	_	
92400	-	-	-	-		_		_	_	_	
92410	_	-	_	_	_	_	-	-	-	_	_
92500	_	-	0.317	_	_	_	0.09		_	_	16,000
92600	1,800	1,550	8.77 0.315	_		_	377 0.09	_	9	115.7	110,000
92610	982	843	8.73 —	-	18.0 —	-	377		0.052	192.3 —	103,000
92700	1,800	1,550	0.317	_	10.0	_	0.09	27.2	- 11	94.0	16,000
92710	982	843	8.78		18.0 —	_	377	47.0 —	0.064	156.3 —	110,000 —
92800	1,751	1,505	-	-	_	_	0.09	_	_	_	16,000
92810	955	818	-	—	_	_	377	_	_	_	110,000
92900	1,887	1,575	0.320		9.5	_	0.09	33.6	9	— 113.5	14,000
93100	1,031	857	8.87	-	17.1	_	377	58.2	0.053	188.7	96,500
	-		-		-		-		-		-
93200	1,790 977	1,570 854	0.322 8.91	10.0 18.0	-	-	0.09 377	33.6 58.2	12 0.070	85.9 142.9	14,500 100,000
93400		-	0.320 8.87		10.0 18.0	-	0.09 377	33.6 58.2	12 0.070	85.9 142.9	11,000 75,800
93500	1,830 999	1,570 854	0.320 8.87		9.9 17.8	-	0.09 377	40.7 70.4	15 0.088	68.4 113.6	14,500 100,000
93600	Ξ	-	-		-		<u> </u>		-	-	
93700	1,705 929	1,403 762	0.320 8.87	-	10.3 18.5	_	0.09 377	27.1 46.9	10 0.059	102.0 169.5	11,000 75,800
93720	=	-	=	-	-	_	=	<u></u>	_	_	_
93800	1,730 943	1,570 854	0.334 9.25	-	10.3 18.5	_	0.09 377	30.2 52.3	11 0.066	91.1 151.5	10,500 72,400
93900	1,730 943	1,570 854	0.334 9.25		10.3 18.5	_	0.09 377	30.2 52.3	11 0.066	91.1 151.5	11,000 75,800
94000			_	-		-	_	-	-	_	
94100	_	-	-	-	- 2		_	_	_	-	-
	-	-	-	-	_	-			-	-	

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

NS umber	Meltin Solidus	g Point Liquidus	Density	the second s	ent of Therm	and the state of t	Specific Heat	Thermal Conductivity	Electrical Conductivity	Electrical Resistivity	Elastic Modulus
	° F ° C	°F °C	lb/in ³ at 68 F g/cm ³ at 20 C	68–212 F, 10 ⁻⁶ per °F 20–100 C, 10 ⁻⁶ per °C	68–392 F, 10 ⁻⁶ per °F 20–200 C, 10 ⁻⁶ per °C	68–572 F, 10 ⁻⁶ per °F 20–300 C, 10 ⁻⁶ per °C	Btu/Ib/° F at 68 F J/kg • °K at 293 K	Btu/ft ² /ft/h/° F at 68 F W/m • ° K at 293 K	% IACS at 68 F Megmho/cm at 20 C	ohms-cmil/ft at 68 F nΩ•m at 20 C	ksi MPa
	U	0			to per o	10 001 0					
94300	-	_	0.336 9.31		-		0.09	36.2 62.7	9 0.053	113.5 188.7	10,500
	-		9.51				3/1	02.7	0.033	100.7	72,400
4310	2		3	_	2 	_					_
							-				
4320					-	-	—	(<u></u>)		-	
	-		—	—	-		-				
94330		<u></u>	2 <u></u>	<u></u> 1	1 <u>11111</u>	_		1 <u></u>	13 1111 11	2 <u></u> 2)	-
			4 <u></u>	_			-	_			
4400	1,725	1,450	0.320		10.3		0.09	30.2	10	103.7	11,000
	941	788	8.87		18.5	the state	377	52.3	0.058	172.4	75,800
4500	1,475	1,725	0.340		10.3		0.09	30.2	10	103.7	10,500
	802	941	9.40	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	18.5		377	52.3	0.058	172.4	72,400
4700			0.320		10.9		0.09	31.2			
4700	1,660	1,880	8.87		19.6	× -	377	54.0	· · · · · · · · · · · · · · · · · · ·	_	15,000
4800	1,660	1,800	0.320			10.9	0.09	22.3	12	85.9	15,000
	904	1,027	8.87		-	19.6	377	38.6	0.070	142.9	103,000
4900	—	-					9 <u></u> 1		-		
			19 <u>11-</u> 1	5 (1) - 1 (1)		이 아는 아이는					
5200	1,913	1,907	0.276	_	—	9.0	0.09	29.1	11	94.0	15,000
	1,045	1,042	7.64			16.2	377	50.4	0.064	156.3	103,000
5210	_	_		_	_		_	_	_		_
3-19	_	1	-		-	-		-			—
5220						_					
9220	Ξ	_	Ξ	_	=	-					
	Common										
5300	1,913	1,904	0.272		(1 	9.0	0.09	36.3	13	80.2	16,000
	1,045	1,040	7.53	-	();	16.2	377	62.8	0.075	133.3	110,000
5400	1,900	1,880	0.269			9.0	0.10	33.9	13	80.2	15,500
	1,038	1,027	7.45		4 <u></u> 7	16.2	419	58.7	0.075	133.3	107,000
5410	1,900	1,880	0.269			9.0	0.10	33.9	13	80.2	15,500
	1,038	1,027	7.45	-		16.2	419	58.7	0.075	133.3	107,000
5420	_	_	_			_			_		
				-			<u> </u>		-	att 14 0 0 att 1	
95500	1 020	1,900	0.070		_	9.0	0.10	24.2	8	100.0	10,000
0000	1,930 1,054	1,038	0.272 7.53	_	· · · · · · · · · · · · · · · · · · ·	16.2	419	41.9	0.049	122.8 204.1	16,000 110,000
	1,001	.,000							5.010		
5510			2	-		_					1
	11-4 3	5		Alex-	in the						1
5520		-	-		-	-	-		1000 A	-	—
	-			-	_		-				-
5600	1,840	1,800	0.278	<u> 20. – 20.</u>		9.2	0.10	22.3	8	122.8	15,000
	1,004	982	7.69			16.6	419	38.6	0.049	204.1	103,000
5700	1,814	1,742	0.272			9.8	0.105	7.0	3	334.2	18,000
	990	950	7.53		— · · · ·	17.6	440	12.1	0.018	555.6	124,000
5710			_		_	_		_	_		
eo 5.4		-	_		-	-	-		1		
5800	1,940	1,910	0.276	_	, ,	9.0	0.105	20.8	7	146.7	16,500
	1,940	1,043	7.64	_		16.2	440	36.0	0.041	243.9	114,000
6040	.,	.,									
5810		-		-	-			_	-		Ξ
	1000 B-0				-			_			
5900		-		-					-	-	
			-		· · · · ·	e (19 19 - 1918		n Teller (199 4) Seler (1994)			3 <u></u> 3
6200	2,100	2,010	0.323	_	: 	9.5	0.09	26.1	11	94.0	18,000
	1,149	1,099	8.94		() -(17.1	377	45.2	0.064	156.3	124,000
6300	2,190	2,100	0.323			9.1	0.09	21.3	6	167.1	20,000
0000											

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

UNS Number		ıg Point Liquidus	Density	Coeffic	ient of Therm	al Expansion	Specific Heat	Thermal Conductivity	Electrical Conductivity	Electrical Resistivity	Elastic Modulus
	° F ° C	° F ° C	lb/in ³ at 68 F g/cm ³ at 20 C	68–212 F, 10 ⁻⁶ per °F 20–100 C, 10 ⁻⁶ per °C	68–392 F, 10 ⁻⁶ per °F 20–200 C, 10 ⁻⁶ per °C	68–572 F, 10 ⁻⁶ per °F 20–300 C, 10 ⁻⁶ per °C	Btu/Ib/° F at 68 F J/kg • °K at 293 K	Btu/ft ² /ft/h/° F at 68 F W/m • ° K at 293 K	% IACS at 68 F Megmho/cm at 20 C	ohms-cmil/ft at 68 F nΩ•m at 20 C	ksi MPa
C96400	2,260	2,140	0.323	-		9.0	0.09	16.4	5	214.8	21,000
C96600	1,238 2,160	1,171 2,010	8.94 0.318			16.2 9.0	377 0.09	28.5 17.4	0.028 4	357.1 240.6	145,000 22,000
090000	1,182	1,099	8.80			16.2	377	30.1	0.025	400.0	152,000
C96700). :		_	=	-	-	_	-	-	-	
C96800	_		1 <u></u> 11	_	_	<u></u>			<u></u>		_
C96900	_	_		_	_	_	_	_	_	_	_
	-		1		-	-	×	<u> </u>			-
C97300	1,904 1,040	1,850 1,010	0.321 8.89	_	_	9.0 16.2	0.09 377	16.5 28.6	6 0.033	182.3 303.0	16,000 110,000
C97400	2,012 1,100	1,958 1,070	0.320 8.86		_	9.2 16.6	0.09 377	15.8 27.3	6 0.032	188.0 312.5	16,000 110,000
C97600	2,089 1,143	2,027 1,108	0.321 8.88			9.3 16.7	0.09 377	13.0 31.4	5 0.029	207.4 344.8	19,000 131,000
C97800	2,156 1,180	2,084 1,140	0.320			9.7 17.5	0.09 377	14.7 25.4	4 0.026	231.4 384.6	19,000 131,000
C98200	_	-	-	-	-	-	-	_	-		_
C98400	_	_			_		-	_	_		
	-	-	-		1963 - 1713						
C98600	_		-		1990 - 1993			- 			
C98800			-			-	_		-	-	_
C98820	-		_	_			_	_	-	_	_
	1999 <u>- 19</u> 97		- * <u></u> *		8 2 - 2 - 2	1917 <u>-1</u> 191711	1999 - 1 994 - 1997	<u>1997</u>	-		200 - 이상하
C98840	_	_		_		-	_				_
C99300	1,970 1,077	1,955 1,068	0.275	-		9.2 16.6	0.10 419	25.4 43.9	9 0.052	115.7 192.3	18,000 124,000
C99350		_		-		_	_	_	_	-	-
C99400		_	0.300 8.30	=	_		_	-	12 0.070	85.9 142.9	19,300 133,000
C99500	_	=	0.300	Ξ		8.3 14.9	<u></u>	-	10 0.057	71.0	19,000 131,000
C99600			8.30 —			_	_	-	0.057	_	
000700	-	-	-	-		-		—	-		-
C99700	1,655 902	1,615 879	0.296 8.19		_	-	— —	— —	3 0.017	353.8 588.2	16,500 114,000
C99750	1,550 843	1,505 818	0.290 8.03		13.5 24.3	=	0.09 377	_	2 0.012	501.3 838.3	17,000 117,000

Unshaded areas = standard U.S. units <mark>Shaded areas = metric units (SI)</mark>

UNS Number	Туре	Conforming Specifications
	Coppers	
C80100	Ingot	Federal QQ-C-521
C81100		
C81200		

	High Coppe	er Alloys
C81400	Sand	ASTM B 770
C81500		
C81540		
C82000	Sand	ASTM B 770, Federal QQ-C-390
C82200	Sand	ASTM B 770
C82400	Centrifugal	Federal QQ-C-390
	Sand	Federal QQ-C-390; ASTM B 770
	Valves	Federal WW-V-1967
C82500	Centrifugal	Federal QQ-C-390; AMS 4511
	Investment	AMS 4511, 4890; Military MIL-C-22087
	Precision	Military MIL-C-11866
	Sand	Federal QQ-C-390; AMS 4511; ASTM B 770
C82510	Sand	ASTM B 770
C82600	Sand	Federal QQ-C-390; ASTM B 770
	Valves	Federal WW-V-1967
C82700	Sand	Federal QQ-C-390
	Valves	WW-V-1967
C82800	Sand	Federal QQ-C-390; ASTM B 770
	Valves	WW-V-1967

	and the second	Zinc and Copper-Tin-Zinc-Lead Alloys aded Red Brasses)
C83300	Ingot	Ingot No. 131
C83400	Rotating Bands	Military MIL-B-46066
C83450	Ingot	ASTM B 30
	Sand	ASTM B 584, B 763
C83500	Ingot	Ingot No. 251
C83600	Centrifugal	AMS 4855; ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Fittings	ASME B 16.15, B16.18, B 16.23, B 16.26, B 16.32, SB 62; ASTM B 62; Federal WW-P-460, WW-T-725
	Flanges	ASME B 16.24, SB 62; ASTM B 62
	Ingot	ASTM B 30; Ingot No.115
	Precision	MIL-C-11866
	Sand	AMS 4855; ASME SB 62; ASTM B 62, B 584; Federal QQ-C-390; SAE J461, J462
	Unions	Federal WW-U-516
	Valves	MIL-V-18436

UNS Number	Туре	Conforming Specifications
C83800	Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Fittings	ASME B 16.15, B 16.18, B 16.23, B 16.32;
		ASTM B 584
	Ingot	ASTM B 30; Ingot No. 120
	Sand	ASTM B 584, B 763; Federal QQ-C-390;
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	SAE J461, J462
	Unions Valves	Federal WW-U-516 Federal WW-V-1967
C83810	176-112001969-	
	Copper-Tin	-Zinc-Lead Alloys
		mi-Red Brasses)
C84200	Continuous	ASTM B 505; Federal QQ-C-390
	Fittings	Federal WW-P-460
C84400	Centrifugal	ASTM B 271; Federal QQ-C-390
	Continuous	ASTM B 505; Federal QQ-C-390
	Fittings	ASME B 16.15, B 16.18, B 16.23, B 16.24, B 16.26
		B 16.32; ASTM B 584; Federal WW-T-725
	Ingot	ASTM B 30; Ingot No. 123
	Sand	ASTM B 584, B 763; Federal QQ-C-390
	Unions	Federal WW-U-516
C84410		
C84500	Ingot	Ingot No. 125
C84800	Centrifugal	ASTM B 271; Federal QQ-C-390
	Continuous	ASTM B 505, Federal QQ-C-390
	Ingot	ASTM B 30; Ingot No.130
	Sand	ASTM B 584, B 763; Federal QQ-C-390
	Copper-Zin	c and Copper-Zinc-Lead Alloys
	(Yellow and	Leaded Yellow Brasses)
C85200	Centrifugal	ASTM B 271; SAE J461, J462
C85200	Continuous	SAE J461, J462
C85200	Continuous Ingot	SAE J461, J462 ASTM B 30; Ingot No. 400
C85200	Continuous Ingot Sand	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390
	Continuous Ingot	SAE J461, J462 ASTM B 30; Ingot No. 400
C85200 C85400	Continuous Ingot Sand Valves Centrifugal	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462
	Continuous Ingot Sand Valves Centrifugal Continuous	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462
	Continuous Ingot Sand Valves Centrifugal Continuous Ingot	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403
	Continuous Ingot Sand Valves Centrifugal Continuous	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390;
	Continuous Ingot Sand Valves Centrifugal Continuous Ingot	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403
C85400	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal WW-V-1967
	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462
C85400	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal WW-V-1967 Federal QQ-C-390
C85400	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal Sand	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal WW-V-1967 Federal QQ-C-390 Federal QQ-C-390
C85400 C85500	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal Sand Valves	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal WW-V-1967 Federal QQ-C-390 Federal QQ-C-390 Federal WW-V-1967
C85400 C85500	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal Sand Valves Centrifugal	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal WW-V-1967 Federal QQ-C-390 Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; Federal QQ-C-390
C85400 C85500	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal Sand Valves Centrifugal Die	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal QQ-C-390 Federal QQ-C-390 Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; Federal QQ-C-390 ASTM B 176
C85400 C85500	Continuous Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves Centrifugal Sand Valves Centrifugal Die Ingot	SAE J461, J462 ASTM B 30; Ingot No. 400 ASTM B 584, B 763; Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; SAE J461, J462 SAE J461, J462 ASTM B 30; Ingot No. 403 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462 Federal QQ-C-390 Federal QQ-C-390 Federal QQ-C-390 Federal WW-V-1967 ASTM B 271; Federal QQ-C-390 ASTM B 176 ASTM B 30, Ingot No. 405.2

UNS Number	Туре	Conforming Specifications
	Manganese	Bronze and Leaded Manganese
	Bronze Allo	
		igth and Leaded High Strength
	Yellow Bras	
	Tenew Bru	55557
C86100	Centrifugal	Federal QQ-C-390
	Ingot	Ingot No. 423
	Sand	Federal QQ-C-390
	Valves	Federal WW-V-1967
C86200	Centrifugal	AMS 4862; ASTM B 271; Federal QQ-C-390;
	Continuous	SAE J461, 462
	Continuous Ingot	ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Federal QQ-C-523; Ingot No. 423
	Precision	Military MIL-C-11866
	Sand	AMS 4862; ASTM B 584, B 763; Federal QQ-C-390;
	band	SAE J461, J462
	Valves	Federal WW-V-1967
C86300	Centrifugal	AMS 4862; ASTM B 271; Federal QQ-C-390;
000000	Gentinugai	SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390
	Ingot	ASTM B 30; Federal QQ-C-523; Ingot No. 424
	Precision	Military MIL-C-11866,
	Sand	AMS 4862; ASTM B 22, B 584, B 763;
		Federal QQ-C-390; SAE J461, J462
	Valves	Federal WW-V-1967
C86400	Centrifugal	ASTM B 271
	Continuous	ASTM B 505; Federal QQ-C-390
	Ingot	ASTM B 30; Federal QQ-C-523; Ingot No. 420
	Sand	ASTM B 584, B 763; Federal QQ-C-390
	Valves	Federal WW-V-1967
C86500	Centrifugal	AMS 4860; ASTM B 271; Federal QQ-C-390;
		SAE J461, J462
	Continuous	ASTM B 505
	Die	ASTM B 176
	Ingot	ASTM B 30; Federal QQ-C-523; Ingot No. 421
	Sand	AMS 4860, ASTM B 584, B 763; Federal QQ-C-390
	33.3	SAE J461, J462
	Valves	Federal WW-V-1967
C86700	Centrifugal	ASTM B 271
	Ingot	ASTM B 30
	Sand	ASTM B 584, B 763
C86800	Sand	Federal QQ-C-390
	Valves	Federal WW-V-1967

	Copper-Sil (Silicon Br	icon Alloys onzes and Silicon Brasses)
C87300	Centrifugal	ASTM B 271; SAE J461, J462
	Ingot	ASTM B 30, Ingot No. 530A
	Precision	Military MIL-C-11866
	Sand	ASTM B 584, B 763; Federal QQ-C-390;
		SAE J461, J462
	Valves	Federal WW-V-1967

UNS Number	Туре	Conforming Specifications
C87400	Centrifugal	ASTM B 271
	Ingot	ASTM B 30; Ingot No. 500B
	Sand	ASTM B 584, B 763; Federal QQ-C-390
	Valves	Federal WW-V-1967
C87500	Centrifugal	ASTM B 271; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 500C
	Permanent	ASTM B 806
	Sand	ASTM B 584, B 763; Federal QQ-C-390
C87600	Ingot	ASTM B 30; Ingot No. 500D
	Sand	ASTM B 584, B 763
C87610	Ingot	Ingot No. 500E
	Sand	ASTM B 584, B 763
C87800	Die	ASTM B 176, SAE J461, J462
	Ingot	ASTM B 30, Ingot No. 500F
	Permanent	ASTM B 806

Copper-Tin	Alloys
(Tin Bronze	es)
Ingot	Ingot No. 242
Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
Ingot	ASTM B 30; Ingot No. 225
Precision	Military MIL-C-11866
Sand	ASTM B 584, B 763; Federal QQ-C-390;
	SAE J461, J462
Valves	Federal WW-V-1967
Centrifugal	AMS 4845; ASTM B 271; Federal QQ-C-390;
	SAE J461, J462
Continuous	ASTM B 505; QQ-C-390; SAE J461, J462
Ingot	ASTM B 30; Ingot No. 210
Sand	AMS 4845; ASTM B 22, B 584, B 763;
	Federal QQ-C-390; SAE J461, J462
Centrifugal	ASTM B 427; SAE J461, J462
Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
Ingot	ASTM B 30; Ingot No. 205
Sand	ASTM B 427; SAE J461, J462
Centrifugal	ASTM B 427
Ingot	ASTM B 30
Sand	ASTM B 427
Centrifugal	Federal QQ-C-390
Continuous	ASTM B 505; Federal QQ-C-390
Ingot	ASTM B 30; Ingot No. 197
Sand	Federal QQ-C-390
	(Tin Bronze Ingot Centrifugal Continuous Ingot Precision Sand Valves Centrifugal Continuous Ingot Sand Centrifugal Continuous Ingot Sand Centrifugal Ingot Sand

\continued on next page

Number	Туре	Conforming Specifications
	and a second second	Alloys \continued
	(Tin Bronze	es)
C91300	Centrifugal	AMS 7322; Federal QQ-C-390
	Continuous	AMS 7322; ASTM B 505; Federal QQ-C-390
	Ingot	ASTM B 30; Ingot No. 194
	Sand	AMS 7322; ASTM B 22; Federal QQ-C-390
C91600	Centrifugal	ASTM B 427; Federal QQ-C-390
	Continuous	Federal QQ-C-390
	Ingot	ASTM B 30; Ingot No. 205N
	Sand	ASTM B 427
C91700	Centrifugal	ASTM B 427
	Ingot	ASTM B 30
	Sand	ASTM B 427
		-Lead Alloys
	(Leaded Tir	1 Bronzes)
C92200	Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Fittings	ASME B 16.24, SB 61; ASTM B 61;
	1445	Federal WW-P-460; WW-T-725
	Flanges	ASME SB 61; ASTM B 61; Federal WW-P-460
	Ingot	ASTM B 30; Ingot No. 245
	Sand	ASME SB 584, SB 61; ASTM B 584, B 61;
	Maluar	Federal QQ-C-390; SAE J461, J462
	Valves	Federal WW-V-1967; Military Mil-V-17547
C92300	Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Ingot	ASTM B 30, Ingot No. 230
	Sand	ASTM B 584, B 763; Federal QQ-C-390; SAE J461
C92310		
C92400	Ingot	Ingot No. 220
C92410		
C92500	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 200N
	Sand	SAE J461, J462
	Valves	Federal WW-V-1967
C92600	Ingot	Ingot No. 215
	Sand	ASTM B 584
C92610		
C92700	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 206
	Sand	SAE J461, J462
C92710		
C92800	Continuous	ASTM B 505
	Ingot	ASTM B 30

C92810

UNS Number	Туре	Conforming Specifications
C92900	Centrifugal	ASTM B 427
	Continuous	ASTM B 505; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 206N
	Sand	ASTM B 427; SAE J461, J462

Copper-Tin-Lead Alloys (High Leaded Tin Bronzes)

C93100		
C93200	Centrifugal Continuous Ingot Permanent Mold Sand	ASTM B 271; Federal QQ-C-390; SAE J461, J462 ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Ingot No. 315 SAE J461, J462 ASTM B 585, B 763; Federal QQ-C-390; SAE J461, J462
C93400	Centrifugal Continuous Ingot Sand	Federal QQ-C-390 ASTM B 505; Federal QQ-C-390 ASTM B 30; Ingot No. 310 Federal QQ-C-390;
C93500	Centrifugal Continuous Ingot Sand	ASTM B 271; Federal QQ-C-390; SAE J461, 462 ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Ingot No. 326 ASTM B 584, B 763; Federal QQ-C-390; SAE J461, J462
C93600	Sand	Federal QQ-C-390
C93700	Bearings Centrifugal	AMS 4827 AMS 4842; ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous Ingot Sand	ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Ingot No. 305 AMS 4842; ASME SB 584; ASTM B 22, B 584, B 763; Federal QQ-C-390; SAE J461, J462
C93720		
C93800	Centrifugal Continuous Ingot Permanent Mold Sand	ASTM B 271; Federal QQ-C-390; SAE J461, J462 ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Ingot No. 319 SAE J461, J462 ASTM B 584, B 66, B 763; Federal QQ-C-390; SAE J461, J462
C93900	Continuous Ingot	ASTM B 505; Federal QQ-C-390 ASTM B 30
C94000	Centrifugal Continuous Ingot Sand	Federal QQ-C-390 ASTM B 505; Federal QQ-C-390 ASTM B 30; Federal QQ-C-390
C94100	Centrifugal Continuous Ingot Sand	Federal QQ-C-390 ASTM B 505; Federal QQ-C-390 ASTM B 30; Ingot No. 325 ASTM B 67; Federal QQ-C-390
C94300	Centrifugal Continuous Ingot Sand	ASTM B 271; Federal QQ-C-390; SAE J461, J462 ASTM B 505; Federal QQ-C-390; SAE J461, J462 ASTM B 30; Ingot No. 322 ASTM B 584, B 66, B 763; Federal QQ-C-390; SAE J461, J462

\continued on next page

-

UNS Number	Туре	Conforming Specifications	
	Copper-1	Tin-Lead Alloys \continued	
	(High Leaded Tin Bronzes)		
C94310			
C94320			
C94330		,	
C94400	Ingot	ASTM B 30	
	Sand	ASTM B 66	
C94500	Ingot	ASTM B 30; Ingot No. 321	
	Sand	ASTM B 66	

	Copper-Tin-Nickel Alloys		
	(Nickel-Tin	Bronzes)	
C94700	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462	
	Ingot	ASTM B 30	
	Sand	ASTM B 584, B 763; Federal QQ-C-390;	
		SAE J461, J462	
	Valves	Federal WW-V-1967	
C94800	Continuous	ASTM B 505; Federal QQ-C-390	
	Ingot	ASTM B 30	
	Sand	ASTM B 584, B 763; Federal QQ-C-390;	
		SAE J461, J462	
	Valves	Federal WW-V-1967	
C94900	Ingot	ASTM B 30	
	Sand	ASTM B 584, B 763	

	Copper-Alu Nickel Allo (Aluminum	
C95200	Centrifugal	ASME SB 271; ASTM B 271; Federal QQ-C-390;
	Continuous	SAE J461, J462 ASME SB 505; ASTM B 505; Federal QQ-C-390;
	Flanges	SAE J461, J462 ASME B 16.24, SB 148; ASTM B 148
	Ingot	ASTM B 30; Ingot No. 415A
	Sand	ASME SB 148; ASTM B 148, B 763; Federal
		QQ-C-390; SAE J461, J462
	Valves	Federal WW-V-1967

C95210

C95220

C95300 Centrifugal ASTM B 271; Federal QQ-C-390; SAE J461, J462 Continuous ASTM B 505; Federal QQ-C-390; SAE J461, J462 Ingot ASTM B 505; Federal QQ-C-390; SAE J461, J462 Permanent ASTM B 30; Ingot No. 415B Percision Military MIL-C-11866 Sand ASTM B 148, B 763; Federal QQ-C-390;

UNS Number	Туре	Conforming Specifications
		SAE J461, J462
	Valves	WW-V-1967
C95400	Centrifugal	ASME SB 271; ASTM B 271; Federal QQ-C-390;
		SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 415C
	Permanent	ASTM B 806
	Precision	Military MIL-C-11866
	Sand	ASME SB 48; ASTM B 148, B 763; Federal QQ-C- 390; SAE J461, J462
	Valves	Federal WW-V-1967
C95410	Ingot	Ingot 415 C + Ni
	Precision	ASTM B 806
	Sand	ASTM B 148, B 763
C95420	Centrifugal	AMS 4870, 4871, 4873; ASTM B 271; Federal
		QQ-C-390; SAE J461, J462
	Sand	AMS 4870, 4871, 4873; Federal QQ-C-390;
		SAE J461, J462
C95500	Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; Federal QQ-C-390; SAE J461, J462
	Ingot Precision	ASTM B 30; Ingot No. 415D ASTM B 806
	Sand	ASTM B 148, B 763; Federal QQ-C-390;
	ound	SAE J461, J462
	Valves	Federal WW-V-1967
C95510	Centrifugal	AMS 4880; ASTM B 271; Federal QQ-C-390; SAE J461, J462
C95520	Contrifugal	AMC 4991, ACTM D 271, Enderel OO C 200,
699920	Centrifugal	AMS 4881; ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505
	Sand	AMS 4881; Federal QQ-C-390; SAE J461, J462
C95600	Ingot	ASTM B 30; Ingot No. 415E
	Sand	ASTM B 148, B 763
C95700	Centrifugal	Federal QQ-C-390
	Ingot	ASTM B 30; Ingot No. 415F
	Sand	ASTM B 148; Federal QQ-C-390
C95710		
C95800	Centrifugal	ASTM B 271; Federal QQ-C-390; SAE J461, J462
	Continuous	ASTM B 505; SAE J461, J462
	Ingot	ASTM B 30; Ingot No. 415G
	Precision	ASTM B 806
	Sand	ASTM B 148, B 763; Federal QQ-C-390; Military MIL-B-24480, SAE J461, J462
	Valves	Federal WW-V-1967
C95810		

Туре	Conforming Specifications	
Copper-Nickel-Iron Alloys		
(Copper-Nickels)		
Centrifugal	ASTM B 369; Federal QQ-C-390; SAE J461, J462	
	ASTM B 30	
	ASTM B 369; Federal QQ-C-390; SAE J461, 462	
Valves	Military MIL-V-18436	
Centrifugal	ASTM B 369; Federal QQ-C-390	
Continuous	ASTM B 505; Federal QQ-C-390	
Ingot	ASTM B 30	
Sand	ASTM B 369: Federal QQ-C-390	
Valves	Federal WW-V-1967	
Sand	ASTM B 770	
Ingot	ASTM B 30	
	Copper-Nic (Copper-Nic Ingot Sand Valves Centrifugal Continuous Ingot Sand Valves	

UNS Number	Туре	Conforming Specifications
C97800	Centrifugal	ASTM B 271
	Continuous	ASTM B 505
	Ingot	ASTM B 30; Ingot No. 413B
	Sand	ASTM B 584, B 763
	Valves	Military MIL-V-18436
	Copper-Lea	ad Alloys
	(Leaded Co	
C98200	Bearings	AMS 4824
C98400	Bearings	AMS 4820
C98600		
C98800		
C98820		
C98840		
	Special All	oys
C99300		

ASTM B 763

ASTM B 763

ASTM B 176

ASTM B 176

C99350 C99400

C99500

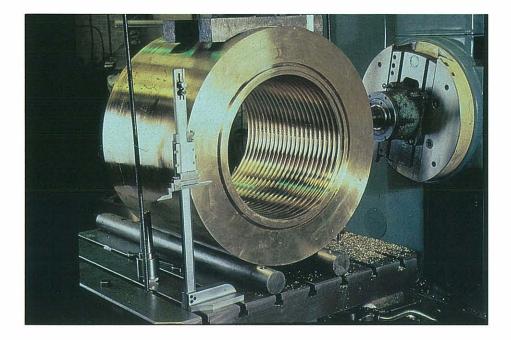
C99600 C99700

C99750

Sand

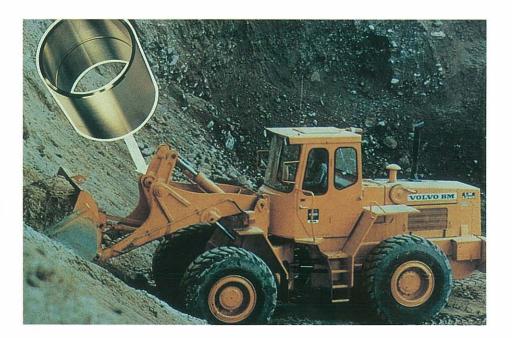
Sand

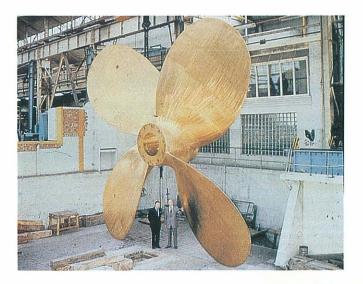
Die


Die

	Copper-Nickel-Zinc Alloys (Nickel Silvers)		
C97300	Centrifugal	ASTM B 271	
	Continuous	ASTM B 505; SAE J461, J462	
	Ingot	ASTM B 30; Ingot No. 410	
	Sand	ASTM B 584, B 763	
C97400	Ingot	Ingot No. 411	
C97600	Centrifugal	ASTM B 271	
	Continuous	ASTM B 505, SAE J461, J462	
	Ingot	ASTM B 30; Ingot No. 412	
	Sand	ASME SB 584; ASTM B 584, B 763; Military MIL-	
		C-17112	
	Valves	Military MIL-V-18436	

FIGURE I-4

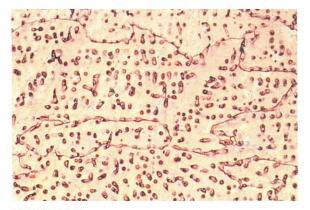

By pressure die casting this door bolt in a yellow brass, the manufacturer eliminated several expensive machine and finishing operations.


FIGURE I-5

High strength yellow brass was selected for this rolling mill adjusting nut. Also known as manganese bronzes and high-tensile brasses, these alloys are the strongest, as cast of the copper-base materials.

FIGURE I-6

The leaded bronze sleeve bearings used in this shovel loader (inset) can accommodate dirty or contaminated lubricants. It also continues to function if lubrication is temporarily interrupted.


FIGURE I-7

Because of its excellent resistance to erosion-corrosion and cavitation attack, nickel-aluminum bronze has become the standard propeller alloy.

FIGURE I-8

Centrifugally cast copper-nickel valve, with split casting dies. Copper-nickel alloys have exceptional resistance to corrosion in seawater.

FIGURE I-9

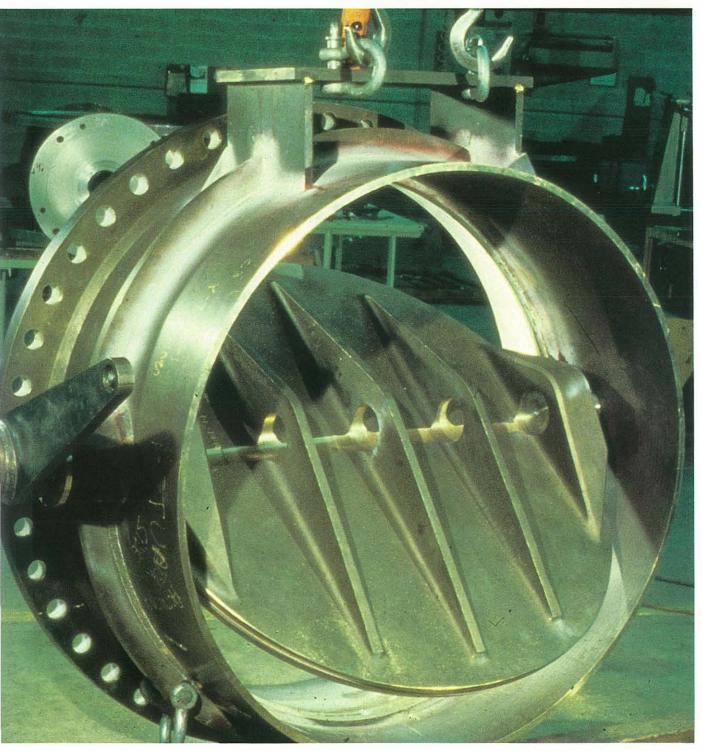

Long-freezing alloys, such as this semi-red brass, solidify by the formation of microscopic tree-like structures called dendrites, traces of which are seen here. Residual microporosity is minimized by mold design, although some porosity is often tolerable.

FIGURE I-10

Lead in copper casting alloys forms discrete microscopic pools. The lead seals pores between dendrites to produce pressure-tight castings. Lead also significantly improves machinability.

Selecting Copper Casting Alloys

II. SELECTING COPPER ALLOYS FOR CORROSION RESISTANCE

Forms of Corrosion in Copper Alloys

Copper is classified as one of the noble metals, along with silver, gold and platinum. While not as chemically inert as the other noble metals, copper is well known for its ability to shield itself from corrosion by forming protective, tightly adhering corrosion product films. The films are usually made up of oxides or hydroxides unless strong anions are present in the environment, in which case the films' structures become more complex. The attractive green patina found on bronze statuary and old copper roofing is a familiar example of this self-protecting behavior.

Alloying can increase copper's corrosion resistance significantly, although effects vary with individual elements and particular environments. The very existence of copper alloys cast at least as early as 5,000 B.C. and of bronzes salvaged from ships that sank more than 1,500 years ago is strong evidence for the copper alloys' inherent corrosion resistance. Despite its nobility, however, copper can be susceptible to several types of corrosion, and before discussing the selection of copper alloys for various environments, it may be helpful to review the more common of these forms of attack.

General Corrosion. As its name implies, general corrosion involves a more or less uniform wasting away of metal surfaces. Attack converts the metal to a corrosion product which may or may not adhere to the surface. Dense, adherent corrosion products such as the minerals in patina block or retard the access of corrodant, usually oxygen, to the metal's surface. Once a protective corrosion product forms, the rate of corrosion quickly diminishes to a value governed by the transport of ionic species through the film. At some point, corrosion may effectively cease altogether.

If the corrosion product swells and spalls away from the corroding surface, fresh metal will be continuously exposed and corrosion will proceed at a rapid rate. The rusting of steel and the exfoliation of heat treated aluminum alloys are familiar examples of this phenomenon. Copper alloys do not normally generate exfoliative corrosion products, although there are some exceptions.

The copper alloys' behavior in marine environments also depends on the tendency for copper to form a tightly adhering, protective corrosion product film. Although some corrosion does occur in seawater, the rate at which it proceeds is quickly and significantly reduced as the protective film forms. The composition and properties of the film depend on the metal composition and on the nature of the environment as the film forms. The film thickness has been found to range between 2,800 Å and 4,400 Å in a 90-10 copper-nickel.

Films consist mainly of cuprous oxide, Cu_2O , but may also contain cuprous hydroxychloride, $Cu_2(OH)_3Cl$ and cupric oxide, CuO, plus oxides and hydroxychlorides of the particular alloy's constituents. The corrosion product film begins to form immediately upon immersion; the rate of film formation, i.e., the corrosion rate, will already decrease to one-tenth of its original rate 10 minutes later, see **Figure II-1**, page 61. The protective film continues to thicken at a decreasing rate until steady state is approached, normally several months to years after immersion.

The benign aspect of general corrosion is that it proceeds at a constant rate so long as the environment doesn't change. If a stable environment can be assured, the life of the product can be calculated. This has led to the common practice of incorporating "corrosion allowances"—extra metal beyond that needed for strength—in corrosion-sensitive products such as cast pipe and fittings.

Pitting Corrosion. In this case, the corrosion process is concentrated in very small areas, leaving the remainder of the exposed surface virtually corrosion-free. Pitting begins with the breakdown of the protective, or passive, surface film through the action of chlorides or other highly oxidizing species in the environment. Penetration rates in the pits themselves can exceed the rate of general corrosion by several orders of magnitude.

Copper alloys are not very susceptible to pitting corrosion, although attack can occur in some fresh and marine waters in coppers, red brasses, and tin, silicon and aluminum bronzes.³ Evidence suggests that pits in copper alloys begin to broaden after reaching a certain depth, leaving a roughened but otherwise intact surface. That is, pits in copper alloys do not "drill" into the surface as they characteristically do in stainless steels and aluminum alloys.

56

Crevice Corrosion. As its name implies, crevice corrosion occurs in regions that are not fully exposed to the corroding environment. Typical examples include metal-to-gasket interfaces, crevices under fastener heads and areas underlying debris deposits. Crevice corrosion is usually not observable until considerable damage has occurred.

Attack begins because the exposed surface, away from the crevice, sees higher oxygen concentrations than the surfaces within the crevice. The exposed surface therefore becomes cathodically polarized to the crevice, which becomes the anode. The small anode/large cathode area ratio that generally results leads to rapid attack in the hidden areas. As with pitting, chlorides accelerate the rate of attack.

Crevice corrosion is not a serious problem among the copper alloys, although yellow brasses and manganese bronzes can corrode in this fashion. Aluminum bronzes, tin bronzes, redand semi-red brasses and copper-nickel alloys are less likely to be attacked. In all, copper alloys are notably superior to the stainless steels in their resistance to crevice corrosion.

Dealloying or "Parting" Corrosion. Some copper alloys corrode by the selective removal of one of the alloy's constituents, leaving behind a spongy mass of nearly pure copper. Dealloying occurs in seawater and in stagnant, neutral or slightly acidic fresh waters, often under sediments or biomass deposits. Corrosion apparently proceeds by the dissolution of the entire alloy followed by the cathodic redeposition of the more noble copper. Two forms of attack are known: plug-type dealloying occurs in localized areas and proceeds relatively rapidly; layertype dealloying is typically spread over larger areas and is somewhat less aggressive.

All brasses are potentially vulnerable to dezincification. The beta phase found in high zinc brasses is especially susceptible to this form of attack. Dealloying in brasses can be reduced significantly by the addition of phosphorus and/or tin. Arsenic and antimony strongly reduce susceptibility in the alpha phase. These alloying elements are utilized in the dezincification-resistant silicon brasses C87800 and C87900. The elements do not retard dezincification of the zinc-rich beta phase, therefore high beta brasses should not be specified for seawater or oxidizing acidic environments.

An analogous form of dealloying known as dealuminification is found in some aluminum bronzes. Alloys with relatively high aluminum contents, such as C95300 and C95400, can contain substantial amounts of the γ_2 phase when in the as-cast condition. The elevated nickel and iron contents of nickel-aluminum bronzes C95500 and C95800 also cause this phase to appear. The presence of γ_2 is detrimental to corrosion resistance, particularly with regard to dealuminification.

The corrosion resistance of alloys C95300 and C95500 can be improved by heat treatment, a process which removes γ_2 from the microstructure and at the same time increases the alloys' strength. In the case of Alloy C95800, the temper anneal heat treatment is applied to improve dealuminification resistance, especially when the alloy is to be used in seawater.

Dealuminification in the aluminum and nickel-aluminum bronzes can be avoided by applying cathodic protection (CP), usually by electrically coupling the alloys with less noble metals. Steel ship hulls, for example, provide adequate CP to protect C95500 propellers, even when these have not been heat treated.

Another copper alloy can also provide CP, but this is not always possible. For example, aluminum bronzes C95200-C95400 are slightly anodic to (less noble than) nickel-aluminum bronzes, but the potential difference between the two alloys is not sufficient to prevent dealuminification of nickelaluminum bronze C95000 when the two are coupled in seawater.

Aluminum-silicon bronze (C95600), as well as manganese-nickelaluminum bronze (C95700), contain little or no γ_2 and they are therefore less susceptible to dealuminification than C95500 and C95800. Heat treatment is not essential; however, the seawater corrosion resistance of these alloys does improve somewhat after the alloys are temper annealed.

Erosion-Corrosion, Cavitation. In quiescent or slowly moving waters, the copper alloys' protective corrosionproduct films are able to replenish themselves faster than they can dissolve, with the result that film thickness and corrosion rates remain essentially constant. When flow velocity is permitted to increase, it eventually reaches a point where the film is removed faster than it can regenerate. This flow rate is called the critical velocity, and it is marked by an abrupt rise in the corrosion rate.

Estimates for critical flow velocities for several of the cast copper alloys are given in **Table 6**, page 61. When using these limiting values, designers should be aware that the numbers refer to smooth flow conditions, and that turbulence around obstructions, at sharp changes in flow direction and over rough cast surfaces may result in velocities that are considerably higher than bulk flow rates would suggest.

Nickel-aluminum bronzes are known for their good resistance to erosion-corrosion, but the degree of resistance depends on the alloys' metallurgical condition. Alloy C95500, for example, exhibits very good resistance to erosion-corrosion in the as-cast condition and good resistance to dealuminification when heat treated.

For the reasons discussed above, the alloy does not require heat treatment to improve its dealuminification resistance when used in ship propellers.

Alloy C95800, an accepted alloy for seawater pump components, behaves similarly, i.e., it has good erosion-corrosion resistance as cast and good dealuminification resistance after heat treatment. However, it is known that erosion-corrosion resistance deteriorates as a result of the temper anneal heat treatment. Therefore, if velocity resistance is important, the alloy should be used in the as-cast condition; if there also is a possibility that dealuminification might occur (as in seawater), the alloy should be protected by an effective CP system.

Severe forms of erosion-corrosion occur when the fluid contains abrasive particles (abrasion corrosion) or when terminal velocities are extremely high (impingement attack). High differential pressures can give rise to vapor generation and cavitation, the mode of attack sometimes observed on the lowpressure side of impellers and ship propellers.

Ordinary erosion-corrosion can usually be avoided by selecting a more corrosion-resistant material, but abrasion-corrosion, impingement and cavitation can only be overcome by using alloys that combine better corrosion resistance with higher strength and hardness.

Galvanic Corrosion. A galvanic couple is formed when two dissimilar metals are electrically connected in the presence of a corrosive medium, or electrolyte. The couple acts as a battery, causing one metal (the more active anode) to corrode more rapidly, while reducing corrosion at the other (the less active cathode). The behavior of metals in galvanic couples depends on the difference in their electrochemical potentials, the properties of the electrolyte and on the galvanic circuit's electrical resistance, i.e., how intimately the metals are connected.

The propensity for galvanic corrosion is described by a galvanic series, which lists the common metals in order of their electrochemical behavior in a particular medium. A galvanic series for seawater exposure (there are many others) is shown in Figure II-2, page 62. The farther apart metals lie on the series, the greater the possibility that galvanic corrosion can occur when the metals are joined. Metals that are close to each other in the series normally do not present a problem; therefore, copper alloys do not affect each other nor are they seriously affected by coupling to nickel-base alloys and passive stainless steels. Copper alloys do accelerate attack in less noble metals such as aluminum and mild steel.

The rate of galvanic attack

depends very strongly on the anode/ cathode area ratio. For example, a small brass fitting may cause no serious damage to a large steel housing because the galvanic corrosion on the steel will be spread over a large area. Galvanic corrosion can be controlled by taking advantage of the area ratio. It can be eliminated entirely by insulating the two metals from each other.

Stress-Corrosion Cracking (SCC). Also known as environmentally assisted cracking, SCC occurs only in the simultaneous presence of a susceptible material, a suitably aggressive environment and a sufficiently high tensile stress. Failure is usually in the form of a network of cracks oriented perpendicular to the applied (or residual) stress vector. Cracking may be intergranular or transgranular depending on the alloy and the attacking medium.

Almost all metals exhibit SCC in some environment, however, susceptibility is typically very specific to the attacking species, and corrodants that readily crack one class of materials may have no effect on another. Chlorides are notorious for causing SCC in stainless steels, for example, but will not crack the copper alloys. Conversely, copper alloys can exhibit SCC in aqueous solutions of ammonium ions, nitrites, mercury compounds, and moist atmospheres containing sulfur dioxide, media which are not known to crack the steels.

SCC susceptibility varies considerably among the copper alloy families. Brasses are most vulnerable to failure in the media listed above; tin-bronzes, red brasses and aluminum bronzes are less sensitive to attack in these environments, and pure copper and coppernickels are essentially immune.

Selecting Alloys for Corrosive Environments

When corrosion resistance is the principal design criterion, the obvious metal to use is the one that provides the desired service life (highest acceptable corrosion rate) at the lowest cost. When a longer minimum service life is required, or when there is uncertainty regarding corrosion conditions over time, the simplest options are to provide a corrosion allowance in the form of excess wall thickness and/or use of a more corrosion-resistant alloy.

Corrosion allowances are only safe to use when corrosion rates can be predicted with a high degree of reliability. They are perfectly acceptable for situations involving general corrosion or mild erosion-corrosion under nonvarying environmental conditions.

Corrosion allowances are less useful when pitting, plug-type dealloying, severe cavitation or stress corrosion cracking can occur, since the rate of penetration under these conditions is nearly impossible to predict. Using a more resistant alloy often—but not always—entails higher costs. In this regard, it should be noted that copper alloys are considerably less expensive than exotic materials such as titanium and nickel-base alloys, yet their performance may be more than adequate to meet the demands of the corrosive environment.

It is often the case that several design criteria must be satisfied at the same time. Alloy selection then becomes a matter of choosing the material with the best overall combination of the required properties. For example, a marine winch bearing would require good corrosion resistance combined with high strength. In this case, an aluminum bronze would be a good candidate because it is both strong and corrosion-resistant.

It is not possible to define a specific alloy for a particular application in a publication such as this. The following chapters therefore suggest selections from groups of alloys that should be nominally acceptable for given situations. The final choice can then be made after testing candidate alloys under simulated service conditions.

Atmospheric Exposure. All copper alloys resist corrosion in clean, dry air. Exposed outdoors, they slowly tarnish to successively darker shades of brown, varying in color with alloy composition. Carbon dioxide, chlorine, sulfur compounds and oxygen dissolved in rainwater may eventually give rise to a gray-green patina. Corrosion rates corresponding to patina formation—an I. CORROSION RESISTANCE

behavior of cold-worked copper alloys suggests increasing resistance to SCC in industrial/near-seacoast atmospheres in the order: 70-30 brass (approximately

ed from the atmosphere. Protective lacquers containing corrosion inhibitors can retain the bright colors of newly polished metal for many years. A number of modern polymeric coatings are also effective outdoors. After sufficient time for protective film formation, atmospheric corrosion rates for copper alloys usually decrease to inconsequential levels. Corrosion rates for copper, aluminum bronze and 70-30 copper-nickel range

excellent example of a protective corro-

Exposed indoors, high strength

yellow brasses (C86100-C86800), nick-

el silvers and aluminum bronzes tend to

retain their brightness quite well. The

cast copper-nickels, which are nearly

coinage alloys used throughout the

identical in composition to the wrought

world, are also highly tarnish resistant.

gradually lose their luster unless shield-

Copper, brasses and tin bronzes

sion-range from 0.00008 to 0.00012

in/y (0.002 to 0.003 mm/y).8

bronze and 70-30 copper-nickel range between 0.000013 and 0.000051 in/y (0.05 and 0.2 μ m/y) after 20 years in rural desert areas, and reach only 0.000011, 0.000051 and 0.00001 in/y (0.43, 0.20 and 0.48 μ m/y), respectively, in northern rural areas. Industrial pollutants, especially when combined with the marine atmospheres of seacoast locations, increase the rate of corrosion several-fold, but only to a quite tolerable 0.00066 in/y (2.6 μ m/y).⁹

High zinc brasses are less resistant to atmospheric corrosion, and may suffer superficial dezincification under acid rain conditions. Sulfur dioxide, the principal industrial pollutant, is detrimental to many copper alloys; however, nickel-tin bronzes and aluminum bronzes can be recommended where high atmospheric concentrations of SO₂ prevail.⁸

Industrial atmospheres occasion-

ally give rise to stress corrosion crack-

ing in cast alloys, but the phenomenon

is rare and data are therefore sparse. The

equivalent to C85800) < leaded duplex

brass < admiralty brass (similar to C85400) < aluminum brass (similar to C86500) < aluminum bronze (similar to C95200).¹⁰ In part because of their lower levels of residual stresses and less severe loading, castings are generally less susceptible to SCC than wrought materials.

Moist ammoniacal atmospheres can produce stress corrosion cracking in copper alloys, although susceptibility varies widely with alloy composition. Again, brasses exhibit the highest susceptibility, followed by aluminum bronzes, pure copper and 90-10 coppernickel. High nickel (70-30) coppernickels are regarded as being virtually immune to SCC failure in this environment.^{11,12}

Copper alloys oxidize slowly in air at elevated temperatures. Oxidation resistance is improved considerably by alloying, which changes the composition and properties of the oxide film. Tenacious mixed-oxide films give aluminum bronzes (including nickel- and manganese-containing varieties), high strength bronzes and beryllium coppers particularly good resistance to oxidation. Nickel, as in copper-nickel alloys, retards the oxidation of copper at high temperatures by as much as a factor of three.13 Brasses are not notably oxidation resistant at elevated temperatures, and for this and other reasons, they are not commonly used above about 572 F (300 C).

Steam. Corrosion resistance in steam is normally a less critical design factor than stress-rupture and creep strength requirements at the service temperature. From a corrosion standpoint, leaded red brass, C83600, leaded semi-red brass, C84400, and high strength yellow brasses and silicon bronzes are all suitable for steam service. The metals' creep strengths (which decrease in the same order) fix the limits of their allowable service conditions.

Aluminum bronzes C95400 and C95500, as well as manganese-aluminum bronze, C95700, are recommended for steam service at temperatures up to 800 F (427 C). Small additions of tin or silver, used to prevent intergranular stress corrosion cracking in wrought aluminum bronzes,¹⁴ are not necessary in cast versions of these alloys. The aluminum bronzes' high hardness helps protect against impingement corrosion, which can occur under wet steam conditions. The leaded tin bronze, C92700, is also widely used in steam fittings.

Fresh Waters. The corrosion behavior of copper alloys in clean, fresh water is similar to that in air. Unless conditions favor dezincification or flow velocities are very high, virtually any copper alloy can be used. Red brass, C83600, and semi-red brass, C84400, are the most popular alloys for cast plumbing hardware in North America.

Higher zinc yellow brasses also give good service, but these alloys may dezincify under conditions involving an acidic pH, stagnation or crevices such as those formed under sediments. Dezincification is less of a problem in tin-bearing brasses (C85200, C85400, C85700) or brasses that are inhibited against dezincification by additions of arsenic or antimony (C87800, C87900).

Some potable waters can attack the lead contained in plumbing fixtures made from alloys such as C83600 and C84400, but this is by no means a universal problem. Moderately hard and harder waters, for example, quickly cause the formation of an insoluble calcareous film that almost immediately blocks any further corrosion of the lead.

Under more aggressive conditions, lead from the fixtures' surfaces can leach into the water. (Since only surface lead is affected by the leaching action, the process is inherently selflimiting.) Therefore, in very soft, aggressive waters, where water remaining in a fixture could exceed the Environmental Protection Agency's action levels for lead after an overnight dwell, designers might opt for a reduced-lead or lead-free alloy. The unleaded silicon brasses, C87600 and C87800 among other alloys, have been proposed as possible alternatives to leaded alloys for such situations.

It should be noted that surface lead can be removed from even highly leaded alloys by a simple chemical treatment with an acidified solution of sodium acetate. This treatment effectively renders the alloys "lead-free" from a corrosion standpoint, yet it has no harmful effect on structure or properties.

Tin bronzes and aluminum bronzes have excellent corrosion resistance in fresh water. These alloys are considerably stronger than the red or semi-red brasses, and are better suited to industrial applications than to domestic plumbing. Typical uses include pump components for handling acidic mine waters and chemical process streams.

Waters containing sulfides, nitrates, cyanides, amines or mercury or ammonia compounds are corrosive to copper alloys. Tin bronzes, aluminum bronzes and copper-nickels are more resistant to these species than coppers and brasses, and these alloys can be used if conditions are well understood. If there is any doubt about performance, it is good practice to conduct simulated or accelerated service tests before committing an alloy to a new application.

Seawater. Copper, the original marine metal, is quite resistant to attack by seawater. This property is shared by most of the cast copper alloys, which find a large market in marine service applications. Pure copper is far too weak for mechanical applications in marine service, and today's workhorse alloys are the strong, corrosion-resistant copper-nickels and aluminum bronzes.

The copper-nickel alloys have exceptional seawater corrosion resistance. With minimum tensile strengths (as sand cast) ranging between 45 and 75 ksi (310 and 517 MPa), depending on alloy type, they have gained wide acceptance in both cast and wrought forms.

Alloy C96200, a 90-10 coppernickel alloy, offers good corrosion performance at a cost between that of the tin bronzes and the higher nickel alloys. As with other copper-nickels, the alloy's corrosion rate in seawater decreases steadily during exposure, eventually approaching steady-state behavior at 0.04 to 0.05 mpy (1.0 to 1.3 x 10⁻³ mm/y), **Figure II-3**, page 61.

Alloy C96400, with 30% nickel, is better able to tolerate polluted waters and high velocity flow than the 90-10 alloy. The alloy contains a small amount of columbium (niobium) to improve its weldability. It is, in fact, the most weldable alloy in the cast coppernickel series and is consequently a good candidate for products in which weldcast fabrication is a manufacturing option. The alloy's higher nickel content makes it about 30% stronger than the 90-10 composition, but it also adds significant cost. Higher initial cost can often be amortized over a longer service life, however, resulting in a lower life cycle cost. This is especially true for maintenance-prone items such as valve components and pump bodies.

With a tensile strength of 75 ksi (517 MPa), the 80-20 alloy, C96300, is the strongest of the conventional cast copper-nickels. It is used primarily for centrifugally cast tailshaft sleeves. Stronger still is alloy C96600, a beryllium-modified 70-30 composition that can be age-hardened to a yield strength of 75 ksi (517 MPa) and a tensile strength of 120 ksi (827 MPa). At maximum strength, the alloy's hardness reaches HR24C. The presence of beryllium oxide in the alloy's protective corrosion-product film enhances corrosion and oxidation resistance.

C96600 is used for highly stressed and/or unattended products such as submerged pressure housings, pump and valve bodies, line fittings, low-tide hardware, submersible gimbal assemblies and release mechanisms. Like all copper alloys, the high strength coppernickels can be soldered and brazed, but their weldability can only be rated as fair.

The aluminum bronzes' resistance to seawater corrosion is almost equivalent to the best copper-nickels. As a class, however, the aluminum bronzes are considerably stronger than the copper-nickels. They tend also to cost a bit less, and they are readily weldable.

As a rule, mechanical properties improve with alloy content, and aluminum bronzes are no exception. The alpha (single-phase) 9% aluminum bronze, C95200, develops a minimum tensile strength of 65 ksi (448 MPa) in the as-sand-cast condition. The 10% aluminum bronze, C95300, and the 11% aluminum, 4% nickel aluminum bronze, C95500, which respond to heat treatment, reach tensile strengths of 80 and 110 ksi (551 and 758 MPa), respectively.

Aluminum-silicon bronze, C95600, manganese-aluminum bronze, C95700 and nickel-aluminum bronze, C95800 do not respond to heat treatment, yet they attain appreciable strength levels (60-90 ksi, 413-620 MPa) in the ascast condition. Typical applications include severe-duty, corrosion-resistant products such as pumps, valves, heat exchanger components and propeller hubs, as well as seawater pipe and fittings for use under high flow rate conditions. Alloy C95800 is regarded as the most cost-effective propeller alloy for commercial vessels.

For less demanding applications, both leaded and unleaded tin bronzes can be considered. These alloys perform very well in seawater but are not often used for marine products because of their modest mechanical properties. On the other hand, red brasses such as C83600 give very good service under moderate operating conditions and can be used very cost-effectively in pumps, valves and general utility products.

Seawater causes dezincification and selective attack of the beta phase in high zinc brasses, including the semi-red brasses. These should only be used with caution in marine applications. Yellow brasses, leaded or unleaded, should not be specified for wetted or submerged applications. High strength yellow brasses are not generally recommended for the same reason, although an alloy similar to C86500 is successfully used for underwater fittings in the U.K.

Desalination. Copper alloys are standard materials for all stages of flashevaporative desalination equipment. They are also used extensively for supply and service water lines in reverse osmosis systems. In one evaporative desalination unit, alpha aluminum bronze, 90-10 copper-nickel and 70-30 copper-nickel exhibited corrosion rates

60

between as little as 0.0003 and 0.001 in/y (0.0076 and 0.025 mm/y) after 29 months' service. The range in corrosion rates in this instance reflects the severity of the service conditions at various locations in the plant.¹⁴

Industrial and Process

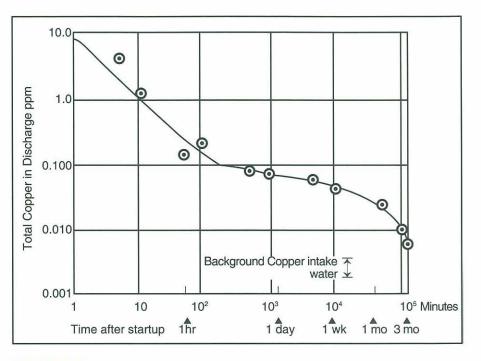
Chemicals. Copper alloys are widely used in the process industries. Properly selected for the given environment, they can be more cost-effective than stainless steels, significantly less expensive than titanium or nickel-base alloys, and cheaper and more reliable in the long run than organic-lined, carbon steel components.

Copper alloy families that display good corrosion resistance in seawater are usually durable in corrosive process streams, as well. That is, red and semired brasses, tin and nickel-tin bronzes, aluminum bronzes and copper-nickel alloys are generally good candidates for industrial chemical service. Because chemical service environments can vary so widely, however, it is always best to test candidate alloys before committing a casting to use. A few general principles may help in making the initial alloy selection(s):^{4.8}

- . Tin bronzes, silicon bronzes, nickel silver, copper, aluminum bronzes and low zinc brasses can safely be used in contact with concentrated or dilute acids and alkalis, hot or cold, providing the medium does not contain air or other oxidants (nitric acid, dichromates, chlorine and ferric salts), complexing agents such as cyanides, ammonia, chlorides (when hot) and amines, or compounds that react directly with copper. The latter include sulfur, hydrogen sulfide, silver salts, mercury and its compounds, and acetylene.
- Yellow brasses and other high-zinc alloys are prone to dezincification and should not be used with dilute or concentrated acids or acid salts, both organic and inorganic. The high zinc alloys should never be used in dilute or concentrated alkalis, neutral chloride or sulfate solutions or mild oxidizing agents such as calcium hypochlorite, hydrogen peroxide and

sodium nitrate.

- Nonoxidizing acetic, hydrochloric and phosphoric acids are relatively benign toward all copper alloys except the high zinc alloys. Tin bronzes, aluminum bronzes, nickel silver, copper and silicon bronzes can be recommended; however, hot and concentrated hydrochloric acid may become aggressive toward alloys which resist attack when the acid is cold and dilute. Nitric, chromic and other oxidizing acids must be avoided in all cases.
- Alkalis are best handled with 70-30 copper-nickel alloys, although high tin bronzes, nickel silver, silicon bronzes and most other alloys except high zinc brasses are safe to use with dilute bases. Aluminum bronzes are susceptible to dealuminification in hot dilute hydroxides, but this tendency is markedly reduced in aluminum bronzes containing tin. Ammonium hydroxide, substituted ammonium compounds, amines and cyanides should never be used in contact with copper alloys as these species cause rapid corrosion through the formation of highly soluble complex ions. Aerated solutions of ammonium compounds and nitrites can cause stress corrosion cracking if the exposed copper alloy is under an applied or residual tensile stress.
- Neutral salt solutions can usually be handled safely by most copper alloys, although corrosion rates vary among alloy types. Chlorides are more corrosive than sulfates and carbonates. especially in aerated solutions; however, copper-nickels and aluminum bronzes are the preferred materials for use in evaporative desalination plants because of their extremely low corrosion rates in these highly saline environments. Basic salts behave like hydroxides, but less aggressively, although high zinc brasses are not recommended. Mercury salts (and the metal itself) are highly corrosive to copper alloys and will, in addition, provoke stress corrosion cracking


when tensile stresses are present.

- Dry gases, including ammonia and chlorine, do not attack copper and copper alloys, but these gases are corrosive when moist. All copper alloys are attacked by moist chlorine; however, chlorinated water can be handled by high tin bronze, aluminum bronze, silicon bronze, nickel silver and copper itself. High zinc brasses are attacked by moist carbon dioxide.
- Organic compounds are generally innocuous toward copper alloys. Exceptions include hot, moist, chlorinated hydrocarbons and aerated organic acids. Moist acetylene forms explosive compounds in contact with copper, although alloys containing less than 65% copper are safe in this regard.
- A number of foodstuffs and beverages are routinely handled in copper alloys, the best-known examples being the use of copper alloy in breweries and distilleries, and nickel silver fittings, valves and fixtures in dairy equipment. It should be noted that copper is an absolutely essential trace nutrient, and its presence in foodstuffs in low concentrations is not hazardous. Copper can impart an objectionable metallic taste if present in sufficiently high concentrations, and it is for this reason that direct contact between copper alloys and acidic foodstuffs should be avoided. An electroplated tin coating provides a good contact barrier. Leaded copper alloys should be used with caution when there is concern that lead may be leached into foods or beverages.

Table 7, page 73, lists the resistance of cast copper alloys to a selection of common industrial and process chemicals. The data are necessarily general in nature and should only be used as a guide. The best assurance of alloy performance can be gained by conducting simulated service tests of candidate alloys before making the final alloy selection.

TABLE 6. Velocity Guidelines for Copper Alloys in Pumps and Propellers Operating in Seawater

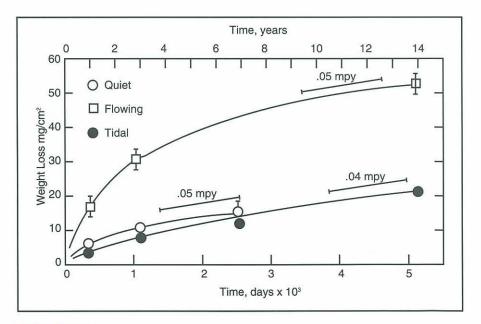
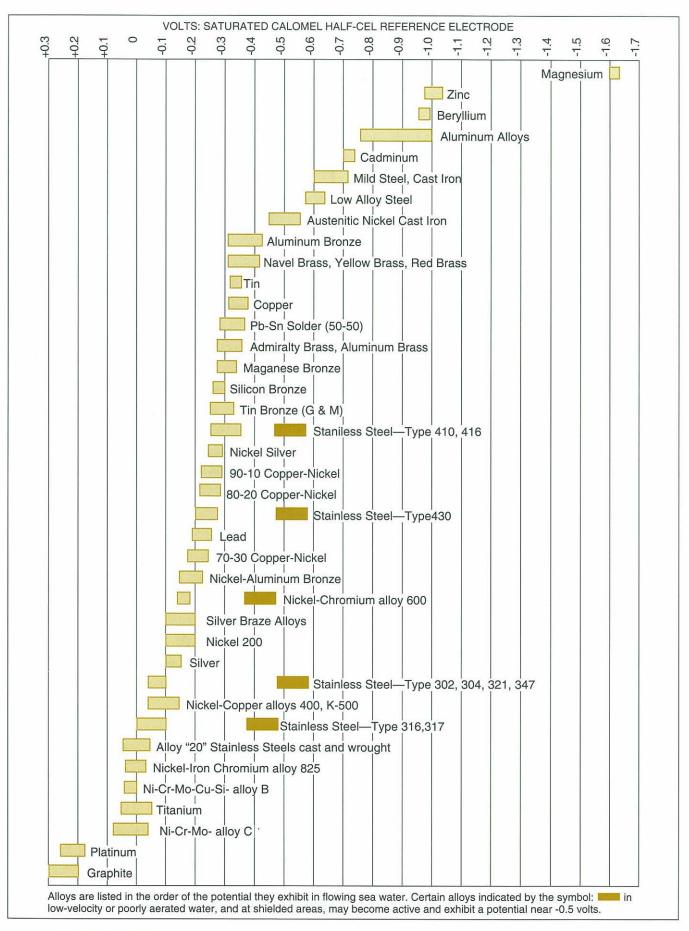

UNS Number	Peripheral Velocity
	feet/second
and the second	meters/second
C83600	<30
HEARING MALERY	<9.1
C87600	<30
	<9.1
C90300	<45
	<13.7
C92200	<45
	<13.7
C95200	<75
	<22.8
C86500	<75
	<22.8
C95500	>75
	>22.8
C95700	>75
	>22.8
C95800	>75
	>22.8

FIGURE II-1.


Formation Rate of Corrosion Film on 90-10 Copper-Nickel in Seawater.

Unshaded areas = standard U.S. units Shaded areas = metric units (SI) Source: G. Butler and A. D. Mercer, Nature, Vol. 256, No. 5520, pp 179-720. See also: Copper-Nickel Alloy–Resistance to Corrosion and Biofouling in the Application of Copper-Nickel Alloys in Marine Systems, available from Copper Development Association Inc.

FIGURE II-2. Weight Loss-Time Curves for 90-10 Copper-Nickel In Seawater.

Source: International Nickel Co., Inc., Marine Corrosion Bulletin MCB-1, 1975.

FIGURE II-3. Galvanic Series

Source: International Nickel Company, Inc.

III. SELECTING COPPER ALLOYS FOR MECHANICAL PROPERTIES

Copper alloys are almost never chosen exclusively for their mechanical properties; however, they are very often selected because they combine favorable mechanical properties with other technical attributes.

Strength

The mechanical properties of cast alloys are derived from, and depend on, a combination of factors. These can be grouped into the composition-related factors that affect the basic strength of the alloy and the structure-related factors that arise when the alloy is cast.

Among the factors affecting the alloys' intrinsic strength are solid solution effects and the presence of hardening phases in the microstructure. Within specific limits depending on the metal, zinc, tin, nickel, aluminum and several other alloying elements form a solid solution with copper that has the same structure as copper itself, but is usually considerably stronger. On the other hand, chromium, zirconium and beryllium exert their greatest strengthening effects when they precipitate as discrete particles.

Microstructural strengthening is actually quite complex. In addition to the effects described above, it can also depend on the formation of additional phases. For example, addition of sufficient zinc to copper-zinc alloys (brasses) produces an incremental jump in strength coinciding with the appearance of the hard beta phase. The formation and/or stability of second phases often also depends on the casting process itself, to the extent that this affects freezing and cooling rates.

Grain size has a strong influence

on mechanical properties. Generally speaking, finer structure produce stronger and more ductile castings. The fineness of the cast structure in sand castings depends very significantly on the freezing rate, or more specifically, on the thermal gradient across the solidification region.

This rule does not always apply to other casting processes. For example, continuous and centrifugal castings solidify very rapidly, yet such castings typically exhibit coarse columnar grain structures. The fact that continuous or centrifugal castings can be at least as strong and ductile as sand castings can be explained by their inherently high degree of internal soundness.

Cooling rate can also exert a strong influence on phase transformations. In transformable compositions, the appearance of a particular phase depends on the time the casting spends within a well-defined temperature range. The fineness of the phase's structure, and hence its influence on mechanical properties, depends on how fast the metal cooled while the phase was forming. In some alloy systems, cooling rate remains important down to a few hundred degrees above room temperature.

The key point is that freezing and cooling rates depend largely on section size. Thin sections chill fairly rapidly, whereas large masses or regions near risers remain liquid for a long time and may cool very slowly once solidified. A casting with widely varying section sizes will freeze and cool over a range of rates, producing a variety of metallurgical structures and a corresponding range of mechanical properties. Uniform properties are best assured by reasonably uniform section thicknesses throughout. Here, the advice of experienced foundrymen and metallurgists can be invaluable.

Unless otherwise specified, the mechanical properties given in this guide were taken from standard test bars, and these can be taken as representative of properties that will be developed in sand castings. Other casting methods may produce different mechanical properties in the same alloy. Assuming a given alloy can be cast by several methods, the one with the fastest cooling rate will generally produce the strongest product.

When adherence to minimum mechanical properties is critical to a product's function, it is advisable to specify that test specimens be taken directly from a carefully chosen area of a sample casting. For castings of relatively uniform cross section, coupons taken from extensions provided for the purpose can be used.

Tables 8 through **10**, pages 76-80, rank the cast copper alloys on the basis of their room temperature mechanical properties.

Strength and Temperature

One inherent advantage of singlephase copper alloys with the face-centered cubic (alpha) crystal structure is that their ductility does not deteriorate very much, if at all, down to very low temperatures. Alloys that contain a large volume fraction of beta will suffer some loss of ductility, but even in these alloys, low-temperature embrittlement is not a serious problem. **Table 11**, page 81, lists impact properties of a few cast copper alloys at temperatures ranging from 572 F (300 C) to -320 F (-196 C)⁸. **Figures III-1**, **2**, **3** and **4**, page 65, illustrate the effects of temperature on selected mechanical properties of four copper alloys.

As with other engineering alloys, copper alloys are chosen for elevatedtemperature service on the basis of their time-dependent deformation behavior. That is:

- The metals slowly deform when held under a constant stress. This process, known as creep, is defined in terms of a given amount of strain (from 0.1% to 1%) for 1,000, 10,000 or 100,000 hours at a given temperature.
- After creep has proceeded to its limit, the metals fail by stress-rupture. The stress-rupture stress is significantly lower than the short-term tensile strength at the same temperature. Behavior is defined in terms of the stress required to cause rupture in a given time (100-100,000 h) over a range of temperatures.
- Applied stresses decrease when metals are held at constant strain, a process known as stress relaxation. Metals are described by the percent stress relaxation with time over the temperature range of interest. Stress relaxation is an important consideration in, for example, high-temperature bolts or spring-loaded electrical contacts.

The copper alloys can be broadly classified into three groups with respect to their elevated-temperature properties:

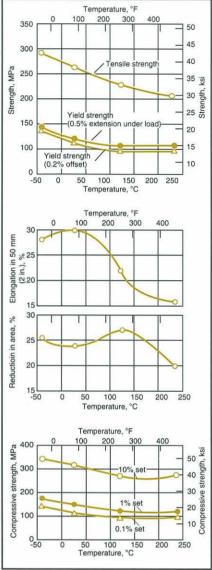
 High conductivity coppers and leaded alloys, which have only modest high temperature strength and are normally not chosen on this basis.

- Unleaded brasses and bronzes, chromium copper and beryllium coppers, which have intermediate to high strengths and in some cases quite exceptional properties.
- Aluminum bronzes and copper-nickel alloys, which have superior resistance to creep and stress-rupture at elevated temperatures. For example, the 10,000-h stress-rupture strength of cast aluminum bronze is more than three times that of leaded red brass C83600 at 482 F (250 C).

High temperature property data for cast copper alloys is unfortunately not abundant; however, based on data for wrought alloys, 90-10 copper-nickel (comparable with C96200), nickel-aluminum bronze (comparable with C95800) and 70-30 copper-nickel (comparable with C96400) are, in order of increasing 100,000-h stress-rupture strength, the most suitable alloys above 662 F (350 C).¹⁵

Figures III-5 and 6, pages 66 and 67, show the effect of temperature on the steady-state creep rate and stressrupture time, respectively, for alloys C86300, C86500, C92200 and C93700. Tables 12 and 13, pages 82 and 83, give creep and stress-rupture data, respectively, for a selection of copper alloys.

Friction and Wear


The unexcelled ability of copper alloys to wear well against steel has led to their widespread use in bearings, wear plates, worm gears and related components. In addition to wear properties, other factors important to the selection of bearing materials include scoring resistance, compressive strength, fatigue resistance, deformability, corrosion resistance, shear strength, structural uniformity, and thermal stability over wide operating ranges, plus cost and availability.^{16,17} These are disussed, along with a complete description of bearing alloys, in the CDA publication, *Cast Bronze Bearings —Alloy Selection and Bearing Design*. The common copper bearing alloys are listed in **Table 14**, page 84.⁶

Fatigue Strength

Gears and other cyclically loaded products are designed in part on the basis of fatigue strength, which describes the change in fracture strength, S, over a large number, N, of stress cycles. S-N curves for alloys C83600, C86500, C87500, C87800, C92200 and C93700 are shown in **Figure III-7**, page 68.

The stress needed to produce failure decreases from the alloy's tensile strength at one stress cycle to less than one-half the tensile strength as N approaches 10⁸ cycles. The rate of decrease itself decreases with increasing N, and may eventually become nearly independent of the number of cycles.

For alloys in which the failure stress does in fact become stress-independent, an absolute fatigue strength can be identified. Fatigue behavior can also be described in terms of an endurance ratio, defined as the fatigue strength at a given number of cycles divided by the static tensile strength. **Table 15**, page 85, lists fatigue strengths and endurance ratios for several cast copper alloys.

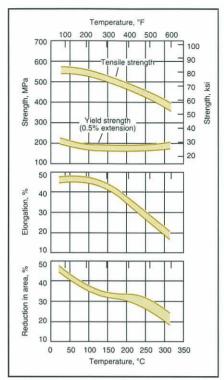
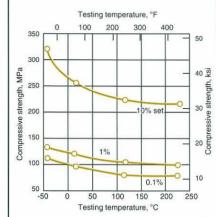
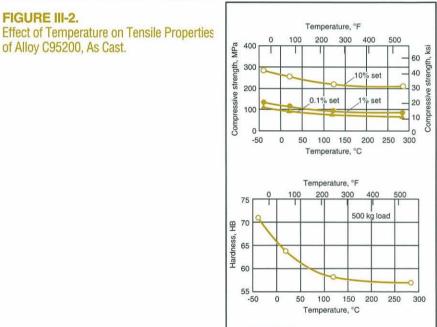
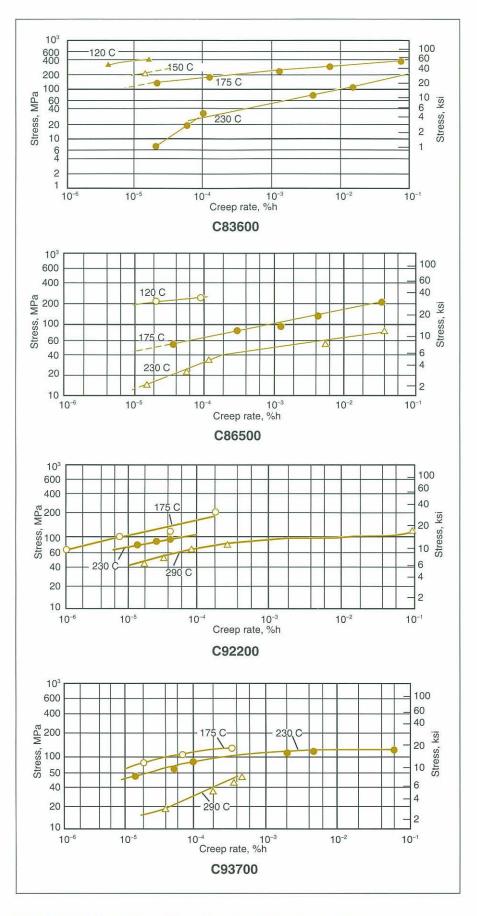



FIGURE III-2.

of Alloy C95200, As Cast.

FIGURE III-3. Effect of Temperature on Compressive Strength of Alloy C83600

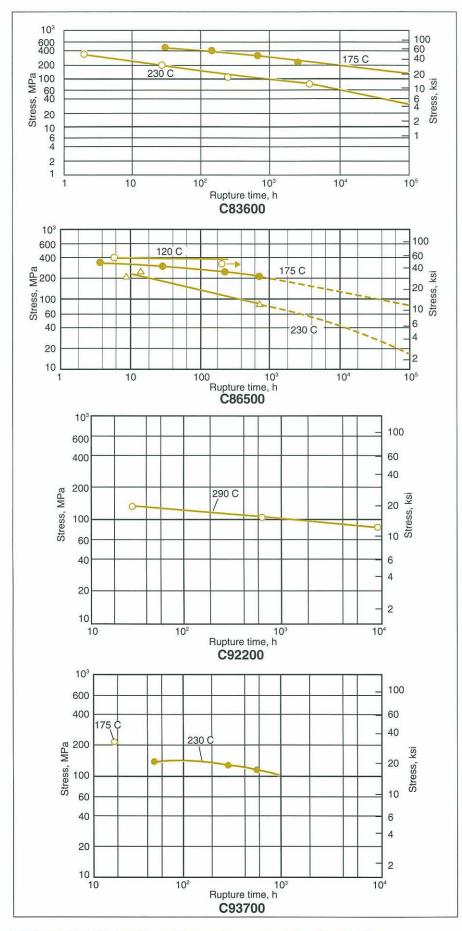

FIGURE III-4. Effect of Temperature on Compressive Strength and Brinnell Hardness of Alloy C92200.

FIGURE III-1. Effect of Temperature on Mechanical

Properties of Alloy C93700.

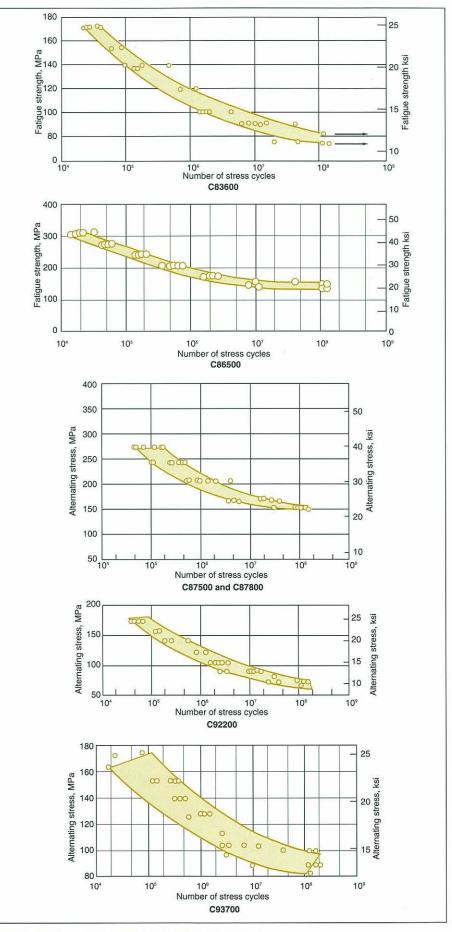


FIGURE III-7. Fatigue Strength of Copper Alloys.

IV. SELECTING COPPER ALLOYS FOR PHYSICAL PROPERTIES

Electrical Conductivity

The International Annealed Copper Standard (IACS) is the recognized standard for metal conductivity. Its value in absolute terms, 0.5800 Megmho/centimeter at 20 C (68 F), corresponds to a resistivity of exactly 17.241 nanohm-meter at that temperature. Highly refined, annealed, wrought coppers have IACS conductivities of 100% or slightly higher at 20 C (68 F), depending on purity. Less-pure coppers and cast copper alloys display conductivities ranging from 95% IACS down to between 5% and 10% IACS. By way of comparison, pure aluminum has a conductivity of about 60% IACS; 5052 aluminum alloy, 35%; carbon steel, 8.5%, and 18-8 stainless steel, about 2.3%.18

Electrical conductivity decreases with increasing alloying content, or more precisely, with the amount of alloying element in solid solution. In a precipitation-hardenable alloy, heat treatment changes the amount of alloying element in solid solution, and therefore alters the alloy's conductivity.

For example, the conductivity of chromium copper, C81500 (1% Cr), in the as-cast or solution-annealed state (tensile strength approximately 23-35 ksi, 172-241 MPa) is only 40%-50% IACS; while in the fully hardened condition (tensile strength 51 ksi, 352 MPa) it rises to 80%-90% IACS. The IACS conductivities of some cast copper alloys are listed in **Table 16**, page 86.¹⁹

Conductivity normally falls with increasing temperature, a factor which must be taken into account in the design of electrical products. This temperature dependence of electrical conductivity for a selection of cast copper alloys is shown in **Figures IV-1**, page 70.⁵

When high strength is not an important design consideration, cast electrical connectors and other currentcarrying products can be made from copper C81100. Applications requiring higher strength along with good electrical conductivity can utilize chromium copper, C81500, or one of the cast beryllium coppers, C82000–C82800. Electrical conductivities of the beryllium coppers range between 82% and 18% IACS. Their corresponding tensile strengths range from 45 ksi to 165 ksi (310 MPa to 1,137 MPa) in the heattreated condition.

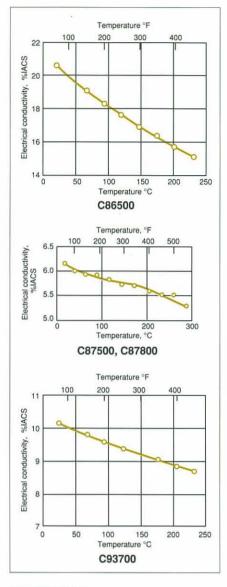
Thermal Conductivity

The copper alloys are well known for their very favorable heat transfer properties. **Table 17**, page 87, ranks the copper alloys in order of their thermal conductivities at 20 C (68 F). Notice that unlike most other metals, the copper alloys' thermal conductivities increase with temperature. The phenomenon is illustrated in **Figure IV-2**, page 70. Designers can take advantage of this useful characteristic to improve the efficiency of copper alloy heat exchangers at elevated temperatures.

Magnetic Properties.

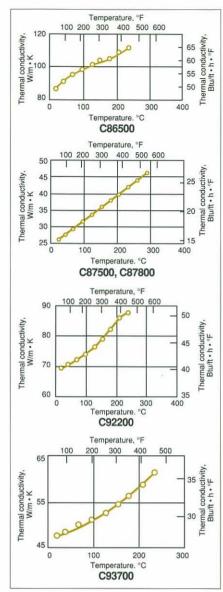
Copper is a diamagnetic metal, i.e., it has a negative magnetic susceptibility and is weakly repelled by magnetic fields. This property is shared by many copper alloys. On the other hand, high strength yellow brasses (manganese bronzes), copper-nickel alloys and aluminum bronzes, which contain up to a few percent iron precipitated as islands of an iron-rich phase, can, as a result, be slightly ferromagnetic. Magnetism in these alloys can be reduced several-fold by solutionannealing them at a high temperature, followed by rapid quenching. This retains the iron in solid solution, where it has little magnetic effect.

Although it is not itself ferromagnetic, manganese can also impart ferromagnetic properties to copper alloys, as in the so-called Heusler alloys, which are based on 75% copper, 15% manganese and 10% aluminum. These alloys are ferromagnetic even though they contain none of the naturally ferromagnetic metals: iron, nickel and cobalt.³


Thermal Expansion.

The thermal expansion coefficients for copper and single-phase alpha alloys fall in a fairly narrow range between 9.4 - 10.0×10^6 / °F (16.9 - 18 $\times 10^6$ / °C), while those for beta and polyphase alloys (yellow brasses, high strength yellow brasses, silicon brass, etc.) are $10.0 - 12.0 \times 10^6$ / °F (18.0 - 21.6×10^6 / °C).³ Thermal expansion coefficients for copper casting alloys are given in **Table 4**, page 42.

Elastic Properties.


Stress-strain curves for copper alloys have the rounded shape that signifies continuous yielding. Since there is no fixed yield point, yield strengths must be defined in terms of a given amount of engineering strain or extension under load. The strain values most often used are 0.2% offset and 0.5% extension under load; obviously, strength values given for the larger strain will be somewhat higher than those for 0.2% strain. In order to avoid confusion, yield strength and strain should always be cited together.

Cast copper has an elastic modulus of 17,000 ksi (117,000 MPa). Brasses and tin bronzes have somewhat lower moduli while beryllium coppers and some copper-nickel alloys are in general a bit stiffer. Elastic moduli (in tension) for the cast copper alloys are listed in **Table 4**, page 42.

FIGURE IV-1.

Variation of Electrical Conductivity with Temperature for Alloys C86500, C87500, C87800 and C93700.

FIGURE IV-2. Variation of Thermal Conductivity with Temperature for Alloys C86500, C87500, C87800 and C93700.

FIGURE V-1 This centrifugally cast flange was welded to the continuously cast aluminum bronze pipe.

FIGURE V-2 Detail of electronic beam (E.B.) welding used to seal prototype spent nuclear fuel container.

V. SELECTING COPPER ALLOYS FOR FABRICABILITY

Castings almost always require further processing after shake-out and cleaning. Machining is the most common secondary operation. Welding is often needed to repair minor defects or to join several castings into a larger assembly. Surface treatments are commonly applied to plaques, statuary and decorative products. All of these processing steps contribute to the cost of the finished item. Therefore, the ease and efficiency with which an alloy can be processed influences its economic viability.

Machinability

As a class, cast copper alloys can be described as being relatively easy to machine, compared with steels, and far easier to machine than stainless steels, nickel-base alloys and titanium, their major competitors for corrosion-resistant products. The copper alloys present a range of machinabilities, and some can be cut considerably faster than others, but none should present extraordinary problems to a skilled machinist.

Easiest to machine are the copper alloys that contain more than about 2% lead. These alloys are free-cutting; that is, they form small, fragmented chips. The chips literally burst away from the cutting tool, generating very little heat and making possible the high machining speeds for which the alloys are known. Tool wear is minimal, and surface finishes are generally excellent.

High speed steel is the accepted tooling material for these alloys, although carbides are commonly used for the stronger leaded compositions. Cutting fluids help reduce the concentration of airborne lead-bearing particulates, but they are not otherwise needed when cutting the highly leaded brasses and bronzes.

The leaded copper casting alloys behave much like wrought free-cutting brass, C36000, which is usually assigned the top "machinability rating" on a scale of 100. Leaded cast copper alloys have ratings greater than about 70; intermediate alloys, between about 30 and 70; while alloys that require special care rank lower, as shown in Table 18, page 88. Machinability ratings are based in part on subjective factors and should therefore only be interpreted as qualitative guides. Nevertheless, notice that leaded copper alloys are several times more machinable than carbon steel, including leaded steel, and that about one-half of the cast copper alloys can be machined easier than a common aluminum alloy. Stainless steels and titanium alloys are notoriously difficult to machine. If they had been listed, they would rank at the bottom of the table.

Next in order of machinability are moderate to high strength alloys which contain sufficient alloying elements to form second phases in their microstructures—the so-called duplex or multiphase alloys.

Examples include unleaded yellow brasses, manganese bronzes and silicon brasses and bronzes. These alloys form short, brittle, tightly curled chips that tend to break into manageable segments. Tools ground with chip breakers help promote this process. Surface finishes can be quite good for the duplex alloys; however, cutting speeds will be lower, and tool wear higher, than with the free-cutting grades. Preferred cutting fluids are those that provide a good combination of lubrication and cooling power.

Finally, there are the unleaded single-phase alpha alloys, which include high conductivity coppers, high copper alloys such as chromium copper and the beryllium coppers, tin bronzes, red brasses, aluminum bronzes and copper-nickels. The alloys' properties range from soft and ductile to very strong and tough, which leads to some variation in machinability among members of the group. There is, however, a general tendency for the alloys to form the long, stringy chips that interfere with high speed machining operations.

In addition, pure copper and highnickel alloys tend to weld to the tool face. This impairs surface finish. Cutting tools used with these alloys should be highly polished and ground with generous rake angles to help ease the flow of chips away from the workpiece. Adequate relief angles will help avoid trapping particles between the tool and workpiece, where they might scratch the freshly machined surface. Cutting fluids should provide good lubrication.

Weldability

Castings are often welded to repair minor defects such as blowholes and small tears. It is also occasionally economical to weld-fabricate several castings (or castings and wrought products) into complex-shaped products that could not easily be produced otherwise. For example, **Figure V-I**, page 70, shows a centrifugally cast flange welded to a continuously cast pipe. Both components are made from nickelaluminum bronze.

Oxygen-containing copper is difficult to weld because the detrimental oxide structures formed at the high welding temperature severely embrittle the metal. In addition, reducing atmospheres can lead to the formation of internal porosity. For these and other reasons, cast coppers are always deoxidized by the addition of a little phosphorus or boron just before pouring. (Cast oxygen-free coppers do not require deoxidation, but they must be melted and cast under inert atmospheres. Like deoxidized coppers, oxygen-free copper is not subject to weld embrittlement.)

Both gas-tungsten-arc (GTAW or TIG) and gas-metal-arc (GMAW or MIG) can produce X-ray quality welds in copper. Shielded-metal-arc (SMAW or stick) welding can also be used, but is somewhat more difficult to control. Oxyacetylene welding is mainly used to join thin sections. Electron beam (EB) welding produces very precise welds of extremely high quality in both oxygenfree and deoxidized copper. It is used, for example, in the cast-weld fabrication of large electronic devices. EB welding must be performed under vacuum or inert gas, making it considerably more expensive than arc processes. Figure V-2, page 70, shows an EB weld used to seal a prototype spent nuclear fuel container.

Electric arc processes are most commonly used to weld the high copper alloys, although oxyacetylene welding is also possible. For age hardenable alloys such as chromium copper or the beryllium coppers, welding should be performed before heat treatment because welding temperatures are high enough to redissolve precipitation hardening elements. This reduces the mechanical properties in and near the weld zone.

The following general comments on the weldability of copper alloy families may be helpful. More detailed information regarding the welding of copper alloys can be found in the AWS/CDA publication, *Copper and Copper Alloys: Welding, Soldering, Brazing, Surfacing*²⁰, available from CDA.

- Small SMAW weld repairs can be made to red and semi-red brasses, even those containing small amounts of lead, but these alloys are not good candidates for cast-weld fabrication. The yellow brasses, and to some extent, the silicon brasses, present similar difficulties.
- The unleaded manganese bronzes (high strength yellow brasses) can be welded by a variety of techniques, including GTAW and GMAW; however, a post-weld heat treatment should be applied to restore the heataffected zone to its highest corrosion resistance.
- Unleaded silicon bronzes are the easiest copper alloys to weld, and are used as filler wires for the welding of other copper alloys. GTAW is the preferred process, but GMAW and oxyacetylene are also widely used.
- Manganese bronzes, manganese-aluminum bronzes and nickel-manganese bronzes are routinely welded using electric arc techniques. Stress relief may be required for alloys C86500 and C86800 to minimize susceptibility to stress-corrosion cracking.
- Cast aluminum bronzes, including the manganese-, iron- and nickelbearing variations, are considered relatively easy to weld; they are not particularly prone to cracking unless their aluminum content is below about 9%.
- Copper-nickels are weldable by both arc and oxyacetlyene techniques. Some softening may occur, but the alloys can be returned to maximum strength by heating and slow-cooling after welding.
- Tin bronzes tend to become hot short and are difficult to weld without cracking. They can, however, be brazed. Nickel-tin bronze, C94700, which can be welded, may require post-weld heat treatment to ensure

optimum mechanical properties.

In general, alloys containing appreciable amounts of lead cannot be welded. Lead, being insoluble in the alloys and having a very low melting point, remains liquid long after the weld metal solidifies. The presence of liquid lead promotes the formation of cracks in the high stress fields existing in and near the weld zone. Bismuth behaves in a similar fashion.

A listing of relative weldabilities for some copper alloys is given in **Table 19**, page 89. The ratings are somewhat conservative, and material suppliers should be consulted regarding recommended welding practices for specific alloys.

Brazing, Soldering

All cast copper alloys can be brazed and soldered to themselves as well as to steels, stainless steels and nickel-base alloys. Even leaded copper alloys can usually be brazed, although brazing conditions must be carefully tailored to the alloy in question. Highly leaded alloys, in particular, require special care.

Copper-phosphorus alloys, silverbase brazing alloys (silver solders) and copper-zinc alloys are most often used as filler metals. Gold-base alloys are utilized in electronic applications. Lower strength joints, such as for household plumbing systems, are made with low-melting point tin-base solders.

The heat of brazing may cause some loss of strength in heat treated copper alloys. This can occur during furnace brazing, or for torch brazing, when high melting point filler metals are employed. Special techniques have been developed to avoid or remedy the problem should it arise.

Except in special situations, corrosion performance of the copper alloys themselves is not affected by brazing; however, the corrosion resistance of filler metals may be significantly different from the base metal in certain media, and this should be taken into account.

TABLE 7. Corrosion Resistance Ratings of Copper Casting Alloys in Various Media es

TABLE /.	Corrosion Resistance Ratings of Copper Casting Alloys in various Media
	(¹ 7, ² 7, ² 7, ¹ 7,
	and the second se
	A A A A A A A A A A A A A A A A A A A
	es set tell res him
	5 10 ¹¹ 5 11 ¹⁵ 5 ¹⁵ 1 ¹¹ 1 ¹⁰ 5 ¹⁵
•	a a strain the star of the strain of the strain the str
dinn	المتهجي على التوليج القرائص التقالي التي تعريه العالي التقائم التقائم التقائم التواجع التواجع التاريخ
Mo	· · · · · · · · · · · · · · · · · · ·
Silve	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Corrosive Medium	
<u> </u>	

Acetate Solvents	В	А	А	А	А	А	В	А	А	А	А	А	А	В
Acetic Acid, 20 %	А	С	В	С	В	С	С	С	С	A	С	А	А	В
Acetic Acid, 50%	А	С	В	С	В	С	С	С	С	А	С	В	А	В
Acetic Acid, Glacial	А	A	А	С	А	С	С	С	C	А	В	В	А	А
Acetone	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Acetylene*	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Alcohols [†]	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Aluminum Chloride	С	С	С	С	С	С	С	С	С	В	С	С	С	C
Aluminum Sulfate	В	В	В	В	В	С	С	С	C	А	С	С	А	А
Ammonia, Moist Gas	C	С	С	С	С	С	С	С	C	С	С	С	С	C
Ammonia, Moisture-Free	А	А	А	А	А	А	А	А	А	А	A	А	А	A
Ammonium Chloride	C	С	С	С	С	С	С	С	C	С	С	С	С	C
Ammonium Hydroxide	C	С	С	С	С	С	С	С	С	С	С	C	С	C
Ammonium Nitrate	C	С	С	С	С	C	С	С	C	С	С	С	С	C
Ammonium Sulfate	В	В	В	В	В	C	С	С	С	А	С	С	А	А
Aniline and Aniline Dyes	C	С	С	С	С	С	С	С	C	В	С	С	С	C
Asphalt	Α	А	А	А	А	А	А	А	А	А	А	А	А	А
Barium Chloride	A	А	А	А	А	С	С	С	C	А	А	А	А	C
Barium Sulfide	C	С	С	С	С	С	С	С	В	С	С	С	C	C
Beert	Α	А	В	В	В	С	С	С	А	А	С	А	А	В
Beet Sugar Syrup	А	А	В	В	В	А	А	А	В	А	А	А	В	В
Benzine	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Benzol	А	A	А	А	А	А	А	А	А	А	А	А	А	А
Boric Acid	А	А	А	A	А	А	А	В	А	А	А	А	А	А
Butane	А	A	А	А	А	А	A	А	А	А	А	А	А	А
Calcium Bisulfite	А	А	В	В	В	С	С	С	C	A	В	Α	А	В
Calcium Chloride (acid)	В	В	В	В	В	В	С	С	С	А	С	С	Α	C
Calcium Chloride (alkaline)	С	С	С	С	С	С	С	C	C	А	С	А	С	В
Calcium Hydroxide	С	С	С	C	C	С	С	С	С	В	С	С	С	С
Calcium Hypochlorite	С	С	В	В	В	C	С	С	С	В	С	C	C	С
Cane Sugar Syrups	А	A	В	А	В	А	А	А	А	A	А	А	А	В
Carbonated Beverages	А	С	С	С	С	C	С	С	C	А	С	С	А	C
Carbon Dioxide, Dry	А	А	А	А	A	А	А	А	А	А	А	А	А	А
Carbon Dioxide, Moist [†]	В	В	В	C	В	С	C	C	C	Α	С	А	А	В
Carbon Tetrachloride, Dry	А	А	А	А	А	А	А	А	А	А	A	А	А	А
Carbon Tetrachloride, Moist	В	В	В	В	В	В	В	В	В	В	В	А	А	А
Chlorine, Dry	Α	А	А	А	А	А	А	А	А	А	А	А	А	А
Chlorine, Moist	С	С	В	В	В	С	С	С	С	С	С	С	С	C
Chromic Acid	С	С	С	С	C	С	С	C	С	C	С	С	С	C
Citric Acid	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Copper Sulfate	В	А	А	А	А	C	С	C	C	В	В	В	А	А
Cottonseed Oil [†]	A	А	А	А	А	А	А	А	А	А	А	А	А	А

A = Recommended B = Acceptable C = Not Recommended

*Acetylene forms an explosive compound with copper when moist or when certain impurities are present and the gas is under pressure. Alloys containing less than 65% Cu are satisfactory under this use. When gas is not under pressure other copper alloys are satisfactory.

[†]Copper and copper alloys resist corrosion by most food products. Traces may be dissolved and affect taste or color. In such cases, copper metals are often tin coated.

TABLE 7. Corrosion Resistance Ratings of Copper Casting Alloys in Various Media \continued

	CAREFOR COORD - FRANCE - FRANC
Corrosie Medium	CARTER TO THE
Corrosi	

Creosote	В	В	В	В	В	С	С	С	С	A	В	В	В	В
Ethers	A	A	А	A	A	A	A	A	A	A	A	A	A	A
Ethylene Glycol	A	A	А	A	A	А	А	A	A	A	A	A	A	A
Ferric Chloride, Sulfate	С	С	С	С	С	С	С	С	С	С	С	С	С	C
Ferrous Chloride, Sulfate	С	С	С	С	С	С	С	С	С	C	С	С	С	C
Formaldehyde	A	А	A	А	A	A	A	А	А	A	A	A	A	A
Formic Acid	A	А	А	A	A	В	В	В	В	A	В	В	В	C
Freon	A	A	A	A	A	A	A	A	A	A	A	A	A	В
Fuel Oil	A	А	A	A	A	A	A	A	A	A	A	A	A	A
Furfural	A	А	A	A	A	A	A	A	A	A	A	A	A	A
Gasoline	A	A	A	A	A	A	A	A	A	А	A	А	A	Α
Gelatin†	A	A	A	A	A	A	A	A	А	A	A	А	A	A
Glucose	A	A	A	A	A	A	A	A	A	А	A	A	A	Α
Glue	A	А	А	А	A	А	А	А	А	A	A	А	A	A
Glycerine	A	А	A	A	A	A	A	A	A	A	A	A	A	A
Hydrochloric or Muriatic Acid	С	С	C	С	С	С	С	С	С	В	C	С	С	С
Hydrofluoric Acid	В	В	В	В	В	В	В	В	В	A	В	В	В	В
Hydrofluosilicic Acid	В	В	В	В	В	С	С	С	С	В	С	С	В	C
Hydrogen	A	А	A	A	A	А	A	A	А	A	A	А	A	А
Hydrogen Peroxide	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Hydrogen Sulfide, Dry	С	С	С	С	С	С	С	С	С	В	С	С	В	C
Hydrogen Sulfide, Moist	С	С	С	С	С	С	С	С	С	В	С	С	С	C
Lacquers	A	А	Α	А	А	Α	А	A	Α	A	A	A	A	A
Lacquer Thinners	A	А	Α	А	А	Α	А	A	А	А	A	A	Α	A
Lactic Acid	A	А	А	A	A	С	С	С	С	A	С	С	A	C
Linseed Oil	A	А	Α	A	А	Α	А	А	А	А	А	A	А	A
Liquor, Black	В	В	В	В	В	С	С	С	С	В	С	С	В	В
Liquor, Green	С	С	С	С	С	С	С	С	С	В	С	С	С	В
Liquor, White	С	С	С	С	С	С	С	С	С	Α	С	С	С	В
Magnesium Chloride	А	А	Α	А	A	С	С	С	С	Α	С	С	А	В
Magnesium Hydroxide	В	В	В	В	В	В	В	В	В	А	В	В	В	В
Magnesium Sulfate	A	A	A	А	В	С	С	С	С	А	С	В	А	В
Mercury, Mercury Salts	С	С	С	С	С	С	С	С	С	С	С	С	С	C
Milk [†]	A	А	A	A	A	A	A	A	A	A	A	А	A	A
Molasses [†]	A	А	Α	А	A	А	A	А	А	А	А	Α	Α	А
Natural Gas	A	А	A	А	A	A	А	A	А	Α	А	Α	Α	A
Nickel Chloride	A	А	А	А	А	С	С	С	С	В	С	С	А	С
Nickel Sulfate	А	Α	А	А	А	С	С	С	С	А	С	С	A	С
Nitric Acid	C	С	С	С	С	С	С	C	С	C	С	С	С	C
Oleic Acid	А	А	В	В	В	С	С	C	C	А	C	A	A	В
Oxalic Acid	A	А	В	В	В	C	С	C	C	A	С	A	A	В
Phosphoric Acid	A	Α	Α	A	A	С	С	С	С	A	С	A	A	A
Picric Acid	С	С	С	С	С	С	С	С	С	C	С	С	С	C
Potassium Chloride	A	A	А	А	А	С	С	С	С	А	С	С	А	С
Potassium Cyanide	С	С	С	С	С	С	С	С	С	С	С	С	С	C

A = Recommended B = Acceptable C = Not Recommended

[†]Copper and copper alloys resist corrosion by most food products. Traces may be dissolved and affect taste or color. In such cases, copper metals are often tin coated.

TABLE 7. Corrosion Resistance Ratings of Copper Casting Alloys in Various Media \continued

TABLE 7.	Corrosion Resistance Ratings of Copper Casting Alloys in various Media \continued
	(a) a
	and the second se
	¹⁰ 101 ² ² 12 ¹⁰ 101
	ARE SEEN AND BREAK STREET
-m	
aedito	
We h.	المرقب
TOSI	
corrosive Medium	ENALTING STATES TO THE PARTY OF THE STATES O

Potassium Hydroxide	С	С	С	С	С	С	С	С	С	А	С	С	С	С
Potassium Sulfate	А	А	А	А	А	С	С	С	С	А	С	С	А	C
Propane Gas	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Sea Water	A	А	А	А	А	С	С	С	С	А	С	С	В	В
Soap Solutions	А	А	А	А	В	С	С	С	С	A	С	С	А	С
Sodium Bicarbonate	А	А	A	А	A	А	А	А	А	A	А	A	А	В
Sodium Bisulfate	С	С	С	С	С	С	С	С	С	A	С	С	С	С
Sodium Carbonate	С	A	А	A	А	С	С	С	С	А	С	С	С	A
Sodium Chloride	А	А	A	А	A	В	С	С	С	А	С	С	А	С
Sodium Cyanide	С	С	С	С	С	С	С	С	С	В	С	С	С	C
Sodium Hydroxide	С	С	С	C	С	С	С	С	С	А	С	C	С	С
Sodium Hypochlorite	С	С	С	С	С	С	C	С	C	С	С	C	С	C
Sodium Nitrate	В	В	В	В	В	В	В	В	В	А	В	В	А	А
Sodium Peroxide	В	В	В	В	В	В	В	В	В	В	В	В	В	В
Sodium Phosphate	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Sodium Sulfate, Silicate	А	А	В	В	В	В	С	С	С	А	С	С	А	В
Sodium Sulfite, Thiosulfate	С	С	С	С	С	С	C	С	С	В	С	С	С	C
Stearic Acid	A	А	А	А	А	А	А	А	А	А	А	А	Α	А
Sulfur, Solid	С	С	С	С	С	С	С	С	С	А	С	С	С	С
Sulfur Chloride	С	С	С	С	С	С	C	С	С	С	С	С	С	С
Sulfur Dioxide, Dry	А	А	А	А	А	А	А	А	А	А	А	А	А	A
Sulfur Dioxide, Moist	А	А	А	В	В	C	C	С	C	А	С	С	А	В
Sulfur Trioxide, Dry	А	A	A	А	А	А	А	А	А	А	А	А	А	A
Sulfuric Acid, 78% or less	В	В	В	В	В	С	C	С	C	А	С	C	В	В
Sulfuric Acid, 78% to 90%	С	С	С	С	С	С	С	С	С	В	С	C	С	C
Sulfuric Acid, 90% to 95%	С	С	С	С	С	С	С	С	С	В	С	С	С	C
Sulfuric Acid, Fuming	С	С	С	С	С	С	С	С	С	А	С	С	С	C
Tannic Acid	А	A	А	А	А	А	А	А	А	А	А	А	А	А
Tartaric Acid	В	А	А	А	А	А	А	А	А	А	А	А	А	А
Toluene	В	В	А	А	А	В	В	В	В	В	В	В	В	А
Trichlorethylene, Dry	А	Α	А	A	А	А	А	A	A	А	А	А	А	А
Trichlorethylene, Moist	А	А	А	А	А	А	А	A	А	А	А	А	А	А
Turpentine	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Varnish	А	А	А	А	А	А	А	А	А	А	А	А	А	А
Vinegar	А	A	В	В	В	C	С	С	C	В	С	С	А	В
Water, Acid Mine	С	С	С	С	С	С	C	С	C	С	С	С	С	С
Water, Condensate	А	А	А	А	А	А	А	А	А	A	А	А	А	А
Water, Potable	А	А	A	А	А	A	В	В	В	А	А	А	А	А
Whiskey [†]	А	А	C	C	С	C	C	C	C	А	С	С	А	C
Zinc Chloride	C	C	C	C	С	C	C	C	С	В	C	С	В	C
Zinc Sulfate	А	А	А	А	А	C	С	С	С	В	C	А	А	C

A = Recommended B = Acceptable C = Not Recommended

[†]Copper and copper alloys resist corrosion by most food products. Traces may be dissolved and affect taste or color. In such cases, copper metals are often tin coated.

TABLE 8. Copper Casting Alloys Ranked by Typical Tensile Strength

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength
			ksi MPa
			ini u
C82600 C82800	S	TF00	165
002000	J		1,138
C82500	c	TF00	160
602300	3		1,103
C82400	c	TF00	155
602400	3		1,068
C82800	c	011	125
002000	0		862
C82500			
C82600 }	S	011	120
			827
C95500	S, CL	TQ50	120
		(SAE -C)	827
C96600	S	TF00	120
			827
C86300	S	M01	119
			821
C95400	S, CL	TQ50	105
		(SAE -C)	724
C95410	S	TQ50	
			724
C82400	S	011	100
			690
C95500	S, CL	M01, M02	
		(SAE -A)	690
C82000	S	TF00	96
			662
C82200	S	TF00	95
			655
C86100	S	M01	95
			655
C86200	S, CL, C	M01, M02, M07	
1			655
C95700	0		05
C99300 }	S	M01	95 655
005000	0.01	1404 1400	
C95800	5, UL	M01, M02 (SAE -A)	95 655
C99500	c	TF00	86
099000	5		593
C86700			
C95410	S	M01	85
	121774		586
C87800	D	M04	85
			586
C94700	S, C	TX00	85
		(SAE -B)	586
C95300	S, CL, C	TQ50	85
		(SAE -C)	586

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength ksi		
		N. Contraction	MPa		
C95400	S, CL	M01, M02	85		
		(SAE -A)	586		
C86800	S	M01	82		
			565		
C82600					
C82800 }	s	M01	80 552		
	c	TB00	80		
C82800	5	1800	552		
C95200	S, CL	M01, M02	80		
000100	0, 02	(SAE -A)	552		
C99400	S	TF00	79		
			545		
C82500					
C95600 }	S	M01	75 517		
4					
C95300	S, CL	M01, M02 (SAE -A)	75 517		
	0				
C96600	5	TB00	75 517		
C99750	c	TQ50	75		
699700	3		517		
C86500	S CL	M01, M02	71		
000000	0,02	(SAE -A)	490		
C82600	S	TB00	70		
			483		
C96400	S	M01	68		
			469		
C87500	S, CL	M01, M02			
			462		
C87600	0	Mod			
C99400 }	5	M01	66 455		
C82000					
C82200	S	011	65		
			448		
C86400		1700017	1997		
C99750	S	M01	65 65		
C99700	P	MOL			
699700	U	M04	65 448		
C82400					
C82500	S	TB00	60		
			414		
C85500	S	M01			
			414		
C91600	01 014	MOD MOD	00		
C91700 }	UL, PM _	M02, M05	60 614		
C94800	s	TX00			
004000	0		414		

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength ksi
			MPa
C85800	D	M04	55
			379
C87300			
C87400	S, CL	M01, M02	55 379
1			
C90700	CL, PM	M02, M05	55 379
007000			010
C97800 C99700 }	S	M01	55
	Sec. 1		379
C81400	S	TF00	53
			365
C81500	S	TF00	51
	Ex el ses		352
C82000			
C82200 }	S	M01	
L.			345
C85700	S, CL	M01, M02	
			345
C94700	S, C	M01, M07	
		(SAE -A)	34
C82000	S	TB00	47
			324
C92900	S, PM, C _	M01, M05, M07	
			324
C82200	S	TB00	45 310
C90300	S, CL	M01, M02	45 310
C90500	S, CL	M01, M02 (SAE -A)	45 310
C94800	S, C	M01, M07	45
007000	0	Mor	
C97600	5	M01	45 310
C90700			
C92500	S	M01	44
		(SAE -A)	303
C91600			
C91700 }	S	M01	44
C92600			303
C92700	S	M01	42
10		(SAE -A)	290
C90900	c	MOI	40
C92800 }	S	M01	40 276
C92200			1. Califica
C92300	S, CL	M01, M02	40
		(SAE -A)	276
C85200	S, CL	M01, M02	38
			262

	Legend: Casting Pro	cesses	
S = Sand	C = Continuous	CL =	Centrifugal
Die = Die	I = Investment	P =	Plaster
	PM = Permanent	Mold	

TABLE 8. Copper Casting Alloys Ranked by Typical Tensile Strength \continued

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength
			ksi
			MPa
C90200			
C97400 }	S	M01	38
			262
C83600	S. CL	M01, M02	37
		(SAE -A)	255
C84800	S	M01	37
			255
C83400			
C84200 }	S	M01	35
C84500			241
C91100			
C91300			
C97300			

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength
			ksi MPa
C83800			
C93200 }	S, CL	M01, M02	35
C93700		(SAE -A)	241
C84400	S	M01	34
			234
C85400	S. CL	M01, M02	34
			234
C93800	CL	M02	33
		(SAE -A)	228
C83300			
C91000 }	S	M01	32
C93400			221
C93500	S. CI	M01, M02	32
000000	0, 01	(SAE -A)	221

UNS Number	Casting Process	Temper, (SAE Suffix) ⁽¹⁾	Tensile Strength
		172 H 1721	ksi MPa
C93900	C	M07	32
C94400	s	M01	32
C81400	s	M01	30
C93800	S. CL	M01, M02	207
			207
C94300	S	M01	27 186
C80100 C81100 }	S	_M01	25
C94500			172

(1) SAE Suffix

For alloys listed under SAE J462, suffix symbols may be specified to distinguish between two or more sets of mechanical properties, heat treatment, conditions, etc., as applicable.

Most commonly used method of casting is shown for each alloy. However, unless the purchaser specifies the method of casting or the mechanical properties by supplement to the UNS Number, the supplier may use any method which will develop the properties indicated. These suffixes are shown in the shaded areas below the temper designations.

See Society of Automotive Engineers Inc., SAE Handbook, Vol. 1, Materials, Warrendale, PA, 1989.

	Legend	: Casting Pro	cesses	States and
S = Sand	C =	Continuous	CL =	Centrifugal
Die = Die	=	Investment	P =	Plaster
	PM =	Permanent I	Mold	

TABLE 9. Copper Casting Alloys Ranked by Typical Yield Strength

Offset Strain as Indicated

UNS Number	Temper	
		ksi MPa
	0.2% Offset	
82600		
C82800 }	TF00	155
		1,069
C82500	TF00	
		1,034
	TF00	145
		1,000
82800	011	110 758
		100
282500 282600	011	105
		724
82400	011	
		551
82000		
82200	TF00	75
		517
86300	M01	67
		462
82600		
82800 }	M01	
86100 87800		345
86200	M01	48
82200	011	
		276
82500	M01	
		276
99750	TF00	
		276
82000	011	
		255
81400	TF00	36
		248
82800	TB00	
-		241
82600	TB00	
		207
85800	M04	
		207
.86500	M01	
		193
82500	TB00	
		172
82200		
86400 -	M01	25 172
1		172

S mber	Temper	Yield Strength
0		ksi MPa
2000	M01	20 138
2400	TB00	20 138
3700	M01	16 110
2000	TB00	15 103
1400	M01	12 83
2200	TB00	12 83

	0.5% Extension	
C96600	TF00	
		517
C95500	TQ50	68
		469
C99500	TF00	62
		427
C94700	TX00	60
034700	1700	414
C99300	M01	55
L99300		379
		010
C95400 C95410	TQ50	54
	1000	372
C99400	TF00	54
C95700	M01	
		310
C95500	M01	44
		303
C86700	M01	42
		290
C95300	TQ50	42
030000	1000	290
001500	TEOO	10
C81500	TF00	40 276
C99750	TQ50	40
		270
C86800		220
C95800 } _	M01	38
1		202
C96600	TB00	38
		262
C96400	M01	37
		255

UNS Number	Temper	Yield Strength
		ksi MPa
C95400 C95410	M01	
C95600	M01	34
	Carry Carry Control	234
C87600 C99750	M01	32
C91600 C91700	M02, M05	
C95400	M07	221 32 21
C87500 C91300 C92800 C97800	M01	
C90700	M02, M05	30
C94800	TX00	
C86500	M01	29
C95200 C95300	M01	27
C99700	M04	27
C92900	M01	26
C87300 C91000 C91100	M01	25
C99700 C87400 C97600 }	M01	24
C85500 C94700 }	M01	165 23
C94800 C90500 C90700 C9	M01	159 22
C91600 C91700		152
C93900	M07	22 152
C90300 C92700	M01	21 145

TABLE 9. Copper Casting Alloys Ranked by Typical Yield Strength \continued Offset Strain as Indicated

UNS Number	Temper	Yield Strength	UNS Number	Temper	Yield Strength	UNS Number	Temper	Yield Strength
		ksi MPa		and the second	ksi MPa			ksi MPa
C90900 C92200 C92300 C92500	M01	20 138	C83800 C90200 C93400 C93500	M01	16 10	C85200 C94300	M01	13 13
C92600 C93800	M02	20	C93800 C94400 C84400	M01	15	C85400 C94500	M01	12 83
C85700 C93200 C93700	M01	18 124	C84200 C84500 C845000 C845000 C845000 C845000 C845000 C845000 C845000 C845000000000000000000000000000000000000	M01	103	C83300 C83400	M01	10 69
C83600 C97300 C97400	M01	17 117	C84800		97	C80100 C81100	M01	9 62

TABLE 10. Copper Casting Alloys Ranked by Compressive Strength*

UNS Number	Temper	Compressive Strength
		ksi MPa
	0.1% Set	
	M01	60
		414
C86100 C86200	M01	50
	WOT	345
295300	TQ50	35
		241
	M01	28
		193
87500		
.95200 }	M01	27
	1104	
C86500	M01	24
286400	M01	
.00400	WOT	152
95300	M01	20
		138
93800	M02	19
		131
	M01	18
		124
	M01	
		103
83600	M01	
		97
C84500 C90300	M01	13
093500		90
93700		
83800		
C92600	M01	12
	M01	.11
		76
	M01	
		69
C85200		
C85400 }	M01	62

UNS Number	Temper	Compressive Strength
		ksi MPa
	1% Set	
	176 Det	
C90500	M01	
		276
C99750	M01	38
		262
C97600	M01	30
		207
C86300	M01	30
		241
C95300	TQ50	35
		241
C92200		
C95300 }	M01	
		138
C84500	M01	
		110
	10% Set	
	1070 001	
C95500	TQ50	
		1,034
C95700	M01	150
		1,034
C95400		
C95410 -	TQ50	120
1		
C95500	M01	120 827
		027
C95400 C95410	MO1	100
C95800	101	690
C86300	M01	97
		669
C95300	T050	90
	1000	621
C86400	M01	87
		600
C95300	M01	
	WOT	572
C86500	M01	79
	WOT	545
C87500	M01	75

UNS Number	Temper	Compressive Strength
-		ksi
and the second		MPa
C99750	MOT	72
L99/20	M01	496
C95200	M01	
		483
C87300		
C87600 }	M01	
		414
C97600	M01	57
		393
C92900	M01	50 345
		040
C93400	M01	48
		331
C93700	M01	47
		324
000000		
C93200	M01	46
		317
C94400	M01	44
		303
C92600	M01	40
representation -		276
C83600		
C92200	M01	38
C93800		262
000000	1101	
C96200	M01	255
C94500	M01	36
		248
C92300	M01	35
		241
C84500		
C84800	M01	34
		234
C85200	MOT	30
	M01	207
C83800	M01	
		200
C85400	M01	28
a state		193
C94300	M01	23

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

* Stress required to produce the indicated percent permanent engineering strain (Set) in a 0.125-in (3.2-mm) thick compression specimen.

TABLE 11. Impact Properties of Copper Casting Alloys at Various Temperatures

UNS Number	Temperature	Charpy V-Notch Impact Strength	UNS Number	Temperature	Charpy V-Notch Impact Strength	UNS Number	Temperature	Charpy V-Notch Impact Strength
	°F	ft-lbs	-	۰F	ft-lbs	-	°F	ft-lbs
	°C	J		°C	J		°C	J
1	-305	11		-320	13		-305	12
	-188	15		-196	18		-188	16
C83600 }	-100	13	C92200 }	-108	14	C95500 }	-200	16
	-74	18		-78	19		-130	22
	68	19		68	19		-78	18
	20	26		20	26		-60	24
	392	15		212	14		68	18
	200	20		100	19		20	24
	572	13		392	13		392	28
	300	18		200	18		200	38
				572	12		572	26
Т —	-305	12		300	16		300	35
	-188	16						
C86500	-100	19		-320	25	1	-290	10
	-74	26		-188	34		-180	14
	68		C95200 }	68	30	C95700 }	-148	16
	20	26		20	41		-100	22
	212	18		212	33		-58	23
	100	24		100	45		-50	31
							68	32
							20	41

Shaded areas = metric units (SI)

* Alloy designations represent UNS compositions closest to British cast alloys listed under BS1400, to which these data apply.

		Test Temperature										
UNS Number	ksi at 250 F MPa at 121 C	ksi at 350 F MPa at 177 C	ksi at 450 F MPa at 232 C	ksi at 500 F MPa at 260 C	ksi at 550 F MPa at 288 C	ksi at 600 F MPa at 316 C	ksi at 700 F MPa at 371 C	ksi at 800 F MPa at 427 C				
C95500	_	-	_			10.5 72	5.5 38	2.4 17				
C95400	-					7.4	4.4	2.9				
C95410						51 7.4	30 4.4	20				
090410	1000 - 1560		ante - dire		-	51	30	2.5				
C95700	_		=	20.4 141		4.2 29	2.3 16					
C97600	_	_	32.5 224	_	22.2 153	=	<u> </u>	-				
C87500	-	28.0	11.0	-	1.4	_	_	_				
C86300	56.5	193 19.0	76 0.5		10	-		-				
000000	389	131 16.0	3.4 11.2		- 6.2							
C92200	-	110	77	_	4.3	-	-	-				
C86500	28.0 193	6.2 43		1.7 12	-	. <u>—</u> .						
C83600	-	12.5 86	11.1 77		7.0 48) (
C92200	_	16.0 110	11.2 77	-	6.2 43	-	_					
C84800	=	11.9 82	8.0 55	-	3.0 21	=		-				
C93700		10.4	7.4	<u></u>	1.8	—	-	-				
		72	51		12							

TABLE 12. Creep Strengths of Selected Sand-Cast Copper Alloys*

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

* Stress values are based on 0.1% creep in 10,000 hours at the temperatures indicated.

TABLE 13. Stress-Rupture Properties of Selected Copper Casting Alloys*

			Test Ter	nperature ——		
UNS Number	ksi at 302 F MPa at 150C	ksi at 392 F MPa at 200 C	ksi at 482 F MPa at 250 C	ksi at 572 F MPa at 300 C	ksi at 662 F MPa at 350 C	ksi at 752 F MPa at 400 C
			Cast Ba	rs		
C958001	<u> 1997 - 1</u> 9	14.8	25.2	16.8	11.2	6.8
		288	174	116	77	47
C83600 ²	22	15.9	10.1	_	-	
	152	110	70			

			Cast Pla	ite		
C958001		_	41.6	24.1	_	_
	-			287	166	
C90500 ³		_	9.4	5.7	-	-
			65	40	-	-
C83600 ²	<u> </u>	14.2	9.0	_		-
		98	62			-

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

* Stress required to produce rupture in 10,000 hours at the temperatures indicated.

¹ Data based on British Standard BS1400, Grade AB2, similar to C95800.

² Data based on British Standard BS1400, Grade LG2, similar to C83600.

³ Data based on British Standard BS1400, Grade G1, similar to C90500.

TABLE 14. Common Bronze Bearing Alloys

UNS Number	SAE No. (Former SAE No.)	Properties, Applications
	Copper Tin Alloys (Tin Bronzes)	
C90300 C90500 C90700	CA903 (620) CA905 (62) CA907 (65)	Good general purpose bearings with favorable combination of strength, machinability, castability, pressure tightness, corrosion resistance. Tin bronzes operate better with grease lubrication than other bearing bronzes. Widely used in water pump fittings, valve bodies and general plumbing hardware.
	Copper-Tin-Lead Alloys (Leaded Ti	n Bronzes)
C92200 C92300 C92700	CA922 (622) CA923 CA927 (63)	Moderate-to-high strength alloys. Lead content provides good machinability but is insufficient to act as "internal lubricant" should normal lubricant be unreliable. Bearings also require good shaft alignment and shaft hardness between 300–400 HB.
	Copper-Tin-Lead Alloys (High-Lead	led Tin Bronzes)
C93200 C93400 C93500 C93600 C93700 C93800 C94100 C94300	CA932 (660) CA935 (66) CA937 (64) CA938 (67) CA943	Good bearing properties, excellent casting and machining characteristics. Higher in strength than copper-lead alloys, although they have somewhat lower strength and fatigue resistance than unleaded tin bronzes. C93200 is often considered the "standard" bearing bronze. C93800 is used for general service at moderate loads and high speeds; C94300 is used at lighter loads and high speeds. These alloys conform well to irregularities in the journal. Applications include light duty machinery, home appliances, farm machinery, pumps and thrust washers.
	Manganese Bronze and Leaded Ma	nganese Bronze Alloys (High Strength and Leaded High Strength Yellow Brasses)
C86300 C86400	CA863 (430B) —	Alloys exhibit good corrosion resistance; however, they require reliable lubrication and hardened, well-aligned shafts. C83600 is twice as strong as C86400 and is used in applications character- ized by high loads and slow speeds. C86400 is better suited to light duty applications.
	Copper-Aluminum Alloys (Aluminu	m Bronzes)
C95300 C95400 C95500 C95520 C95800	CA953 (68B) C954 C955 — C958	High strength, very corrosion and wear resistant. Widely used in heavy duty applications or where shock loading is a factor. Useful to temperatures higher than 500 F (260 C). Not suitable for high speeds or applications where lubrication is intermittent or unreliable. Alloys C95300, C95400 and C95500 can be heat treated to improve their mechanical properties, as required, for severe applications.
	Copper-Silicon Alloys (Silicon Bro	nzes and Silicon Brasses)
C87600	_	Alloys have moderately high strength, good wear resistance and good aqueous corrosion resistance. These alloys are not so widely used for bearings as other bronzes. C87900 can be die cast.
	Copper-Beryllium Alloys (Beryllium	n Copper)
C82800	_	C82800 is the strongest of all copper casting alloys. It has good corrosion resistance and high thermal conductivity; however, it requires reliable lubrication and hardened, well-aligned shafts. The alloy's use in bearings is limited to those applications where its superior mechanical and thermal properties can justify its relatively high cost.
	Copper-Lead Alloys (Leaded Copp	ers)
C98200 C98400 C98600 C98800 C98820 C98820 C98840	49 	Alloys have fair strength, fair wear resistance and low pounding resistance, but have very favorable antifriction properties and good conformability. They operate well under intermittent, unreliable or dirty lubrication, and can operate under water or with water lubrication. Used at light-to-moderate loads and high speeds, as in rod bushings and main bearings for refrigeration compressors, and as hydraulic pump bushings. Usually require reinforcement.

TABLE 15. Fatigue Properties⁽¹⁾ of Selected Copper Casting Alloys

UNS <u>Number</u>	Temper	Fatigue Strength	Endurance Ratio	UNS <u>Number</u>	Temper	Fatigue Strength	Endurance Ratio
		ksi MPa			la secol	ksi MPa	
C80100 C81100	M01	9	0.360	C94500	M01	10 69	0.400
C81500	TF00	62 15	0.294	C94700	M01	14 97	0.280
		103		C94700	TF00	14	0.165
C82000	TF00	18 ⁽²⁾ 124	0.188 ⁽²⁾	C94800	M01	97 12	0.267
C82400	TF00	23 ⁽²⁾ 160	0.148 ⁽²⁾			83	
C82500	TF00	24 ⁽²⁾	0.150 ⁽²⁾	C94800	TX00	12 83	0.200
C83600	M01	165 11	0.297	C95300	M01	22 152	0.293
000000	Mot	76	0.010	C95300	TQ50	27	0.318
C86300	M01	25 172	0.210	C95400	M01	186 28	0.329
C86500	M01	20 138	0.296	005500	1404	193	0.010
C90200	M01	25 172	0.658	C95500	M01	31 214	0.310
C90500	M01	13	0.289	C96200	M01	13 90	0.289
C90700	M01	90 25	0.568	C95200	M01	22 152	0.275
		172		C95400	TQ50	35	0.333
C92200	M01	11 76	0.275	C95500	TQ50	241 38	0.317
C93200	M01	16 110	0.457			262	
C93400	M01	15	0.469	C95700	M01	33 228	0.347
C93700	M01	103 13	0.375	C95800	M01	31 214	0.326
000000		90	0.000	C96400	M01	18	0.265
C93800	M01	10 69	0.333	C97600	M01	124 16	0.356
C94400	M01	11 76	0.344	-11 mar 1341-44		110	
				C99750	M01	19 131	0.292

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

 $^{(1)}$ Measured at 10⁸ cycles or as indicated.

(2) Measured at 5 x 10⁷ cycles

TABLE 16. Copper Casting Alloys Ranked by Electrical Conductivity

UNS Number	Electrical Conductivity % IACS at 68 F Megmho per cm	UNS Number	Electrical Conductivity % IACS at 68 F Megmho per cm	UNS Number	Electrical Conductivity % IACS at 68 F Megmho per cm	UNS Number	Electrical Conductivity % IACS at 68 F Megmho per cm	UNS Number	Electrical Conductivity % IACS at 68 F Megmho per cm
	at 20 C		at 20 C		at 20 C		at 20 C		at 20 C
C80100	100 0.580	C82700	20 115	C90200 C95300	13	C99500	10 0.057	C96300	6 0.036
C81100	92 0.534	C85400	20 113	C95400 C95410 C92300	0.075	C90700	10 0.056	C87300 C87600	6 0.035
C81500	82 82	C86400	19 111	C93200 C93400	12 0.070	C91000	9 0.054	C97300	6
C81400	60 0.348	C82600	19 19	C94800 C99400		C92900 C94300	9	C97400	0.033
C82200	45 0.261	C82800 C85200	18	C90300	12 0.069	C86800	0.053	C97600	0.032
C82000	45 0.260	C86700	0.104	C90500 C92700	11	C92600 C99300	9 0.052	C96400	0.029
C83400	44 0.256	C84500	0.097	C93800 C93900	11	C91100 C95500 C95600	8 0.049	C97800	0.028
C83300	32 32	C84200 C84400 }	0.096	C95200	0.066	C86100 C86200	8	C96600	0.026 4
C85500	26 151	C84800	0.095	C96200 }	11 0.064	C86300	0.044	C95700	0.025
C82400	250.144	C93500	15 0.088	C93700	10 0.059	C95800	0.046	C99700	0.018
C85700 C86500	220.128	C83600 C83800	15 0.087	C91600 C91700 C94400	10	C91300	0.041 7 0.040	C99750	0.017 2 0.012
C82500 C85800	20 0.116	C92200	14 0.083	C94500 C99400		C87400 C87500 C87800	7 7 0.039		
SS 2 9 3				l				1	

TABLE 17. Copper Casting Alloys Ranked by Thermal Conductivity

UNS Number	Thermal Conductivity Btu/ft²/ft/h/°F at 68 F W/m • °K at 293 K	UNS Number	Thermal Conductivity Btu/ft ² /ft/h/°F at 68 F W/m • °K at 293 K	UNS Number	Thermal Conductivity Btu/ft²/ft/h/°F at 68 F W/m • °K at 293 K	UNS Number	Thermal Conductivity Btu/tt²/tt/h/°F at 68 F W/m•°K at 293 K	UNS Number	Thermal Conductivity Btu/ft²/ft/h/°F at 68 F W/m • °K at 293 K
C80100	226 391	C85500	67.0 116	C93500	40.7 70.4	C95200	29.1 50.4	C96600	17.4 30.1
C81100	200	C86400	51.0 88.3	C92200	40.2	C92700	27.2 47.0	C97300	16.5 28.6
C81500	182 315	C85400	50.8 87.9	C95300	36.3 62.8	C93700	27.1 46.9	C96400	16.4 28.5
C81400 C82000	150	C86500	49.6 85.3	C94300	36.2 62.7	C96200	26.1 45.2	C87300 C87600	16.4
C83400	259	C85200 C85700	48.5	C90200	36.0 62.3	C99300	25.4 43.9	C87400	28.4
C82200	188	C85800 C90300 C90500	83.9	C95400 C95410	33.9	C95500	24.2 41.9	C87500 } C87800 }	16.0 27.7 15.8
C82400	183 76.9 133	C92300	43.2	C92900 C93200 }	33.6	C94800 C95600	22.3	C97400	15.0 27.3 14.7
C82500	74.9	C84200 C84400	41.8	C93400	58.2 31.2	C96300	21.3 36.8	C97600	25.4
C82600	130	C83600 C84500	41.6	C93800	54.0	C95800	20.8	C95700	31.4
	126	C84800 C90700	72.0	C93900 C94400	30.2	C86100		695700	12.1
C82800	70.8 123	C91600 C91700	40.8	C94500		C86200 C86300	20.5 35.5		

Unshaded areas = standard U.S. units Shaded areas = metric units (SI)

87

TABLE 18. Copper Casting Alloys Ranked by Machinability Rating

UNS Number	Machinability Rating	UNS Number	Machinability Rating	UNS Number	Machinability Rating	UNS Number	Machinability Rating	UNS Number	Machinability Rating
C36000 ⁽¹⁾ C83800 C84400 C84500 C84800 C83600 C83600 C83600 C85200 C85200 C85500 C85500 C85500 C85500 C85800 C93700 C93900	90 84 80	C92800 C93200 C93200 C93200 C93200 C93200 C93500 C97300 C97600 C97600 C86400 - C83400 C95400 C95600 C95600 C97400 C97800 C86700 C95300	70 65 60 55	C87400 C87500 C94800 ⁽²⁾ C95500 C95700 C99500 2011-T3 C92700 C92200 C92200 C92300 C92300 C87300 C87600 C87600	50 (AI) ⁽¹⁾ 454240	C81700 C82000 C82200 C82400 C82500 C82600 C82700 C82800 C85300 C85300 C86100 C86200 C86800 C90300 C90500 C90500 C92500 C94700 ⁽²⁾	30	C81300 C81400 C81500 C90200 C90700 C90900 C91000 C91600 C91700 C94700 ⁽³⁾ C95800 C95800 C95800 C96400 C96600 C99300	20
C93900 C94300 C94400 C94500 C99700 C99750		C99300	2	C92600 C92900 C94800 ⁽³⁾ C83300	35	C86500	26 (Steel) ⁽¹⁾ 21	C96300 C80100 C81100 C91100 C91300 C96200	15
								C86800 C86300	8

(1) Shaded areas identify wrought products included for comparison.
 (2) M01 Temper
 (3) TF00 Temper

TABLE 19. Joining Characteristics of Selected Copper Casting Alloys

UNS Number	Solder	Braze	OAW	CAW	GMAW	GTAW/ Smaw
C80100	А	А	D	C	С	D
C81100	А	А	D	C	С	D
C81300	A	В	D	C	С	С
C81400	А	В	D	С	С	C
C81500	В	В	D	C	С	D –
C82000	В	В	D	С	С	С
C82200	В	В	D	C	С	С
C82400	C	С	D	C	С	C
C82500	C	С	D	C	С	C
C82600	C	С	D	C	С	С
C82700	C	С	D	C	С	С
C82800	C	C	D	C	С	C
C83300	А	В	D	D	C	D
C83400	А	А	C	D	C	D
C83600	А	В	D	D	D	C
C83800	Α	В	D	D	D	C
C84200	А	В	D	D	D	C
C84400	А	В	D	D	D	C
C84500	А	В	D	D	D	С
C84800	А	В	D	D	D	С
C85200	А	C	C	D	D	D
C85400	А	А	C	D	D	D
C85500	В	С	D	D	D	D
C85700	В	C	D	D	D	D
C85800	В	В	D	D	D	D
C86100	D	D	В	D	С	В
C86200	D	D	В	D	С	В
C86300	D	D	D	D	D	В
C86400	C	С	D	D	D	D
C86500	C	С	D	D	D	D
C86700	C	C	D	D	D	D
C86800	С	C	D	D	D	D
C87400	D	C	С	D	С	D
C87500	D	C	C	D	С	D
C87600	D	C	В	D	С	С
C87800	D	C	D	D	D	D
C90200	А	В	C	C	C	C
C90300	А	В	C	C	C	C
C90500	А	В	C	C	C	C
C90700	А	В	C	С	С	C
C90900	А	В	C	С	С	C
C91000	А	В	C	С	С	C
C91100	А	В	C	C	С	C
C91300	А	В	C	С	C	C

A = Excellent B = Good

D = Not Recommended

OAW = Oxyacetylene Welding

CAW = Carbon Arc Welding

GTAW/GMAW = Gas Tungsten Arc/Gas Metal Arc Welding (TIG/MIG)

C = Fair

SMAW = Shielded Metal Arc Welding (Stick)

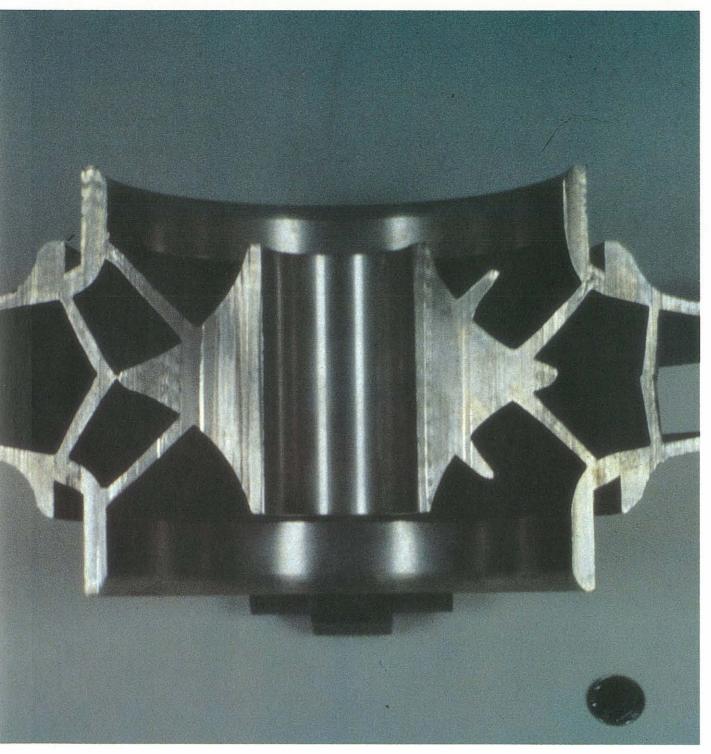
UNS Number	Solder	Braze	OAW	CAW	GMAW	GTAW/ Smaw
C91600	A	В	C	C	C	C
C91700	A	B	C	C	C	C
C92200	A	A	D	D	D	D
C92300	A	В	D	D	D	D
C92500	A	В	D	D	D	D
C92600	A	В	D	D	D	D
C92700	A	B	D	D	D	D
C92800	A	B	D	D	D	D
C92900	A	В	D	D	D	D
C93200	A	B	D	D	D	D
C93400	B	B	D	D	D	D
C93500	B	B	D	D	D	D
C93700	B	B	D	D	D	D
C93800	В	D	D	D	D	D
C93900	В	D	D	D	D	D
C94300	В	D	D	D	D	D
C94400	В	В	D	D	D	D
C94500	В	D	D	D	D	D
C94700	A	A	C	D	В	В
C94800	A	В	D	D	D	D
C95200	В	В	D	С	A	В
C95300	В	В	D	C	А	В
C95400	В	В	D	C	А	В
C95500	В	C	D	D	В	В
C95600	В	В	D	C	В	C
C95700	В	В	D	В	А	В
C95800	В	C	D	D	В	В
C96200	A	A	D	D	D	С
C96300	A	А	D	D	С	C
C96400	A	А	D	D	В	В
C96600	А	А	В	С	С	С
C97300	А	A	D	D	D	D
C97400	А	A	D	D	D	D
C97600	A	A	D	D	D	D
C97800	А	A	D	D	D	D
C97300	D	В	D	D	В	В
C99700	В	В	В	-	-	—
C99750	В	В	D	D	С	D

TABLE 19. Joining Characteristics of Selected Copper Casting Alloys \continued

A = Excellent B = Good C = Fair D = Not Recommended

OAW = Oxyacetylene Welding

CAW = Carbon Arc Welding


GTAW/GMAW = Gas Tungsten Arc/Gas Metal Arc Welding (TIG/MIG)

SMAW = Shielded Metal Arc Welding (Stick)

TABLE 20. Technical Factors in the Choice of Casting Method for Copper Alloys

Casting Method	Copper Alloys	Size Range	General Tolerances	Surface Finish	Minimum Section Thickness	Ordering Quantities	Relative Cost, (1 Low, 5 High)
Sand	All	All sizes, depends on foundry capability.	$\pm 1/32$ in up to 3 in; $\pm 3/64$ in 3–6 in; add ± 0.003 in/in above 6 in; add ± 0.020 to ± 0.060 in across parting line.	150-500 μin rms	¹/8 −1/4 in	All	1–3
No-Bake	All	All sizes, but usually >10 lbs	Same as sand casting	Same as sand casting	Same as sand casting	All	1–3
Shell	All	Typical maximum mold area = 550 in ² typical maximum thickness = 6 in	± 0.005 -0.010 in up to 3 in; add ± 0.002 in/in above 3 in; add ± 0.005 to 0.010 in across parting line.	125–200 μin rms	³ / ₃₂ in	≥100	2–3
Permanent Mold	Coppers, high copper alloys, yellow brasses, high strength brasses, silicon bronze, high zinc silicon brass, most tin bronzes, aluminum bronzes, some nickel silvers.	Depends on foundry capability; best ≈ 50 lbs Best max. thickness ≈ 2 in	Usually ±0.010 in; optimum ±0.005 in, ±0.002 in part-to- part.	150–200 μin rms, best ≈70 μin rms	¹/8 −¹⁄4 in	100–1,000, depending on size.	2-3
Die	Limited to C85800, C86200, C86500, C87800, C87900, C99700, C99750 & some proprietary alloys.	Best for small, thin parts; max. area ≤ 3 ft ² .	± 0.002 in/in; not less than 0.002 in on any one dimension; add ± 0.010 in on dimensions affected by parting line.	32–90 μin rms	0.05–0.125 in	≥1,000	1
Plaster	Coppers, high copper alloys, silicon bronze, manganese bronze, aluminum bronze, yellow brass.	Up to 800 in ² , but can be larger.	One side of parting line, ± 0.015 in up to 3 in; add ± 0.002 in/in above 3 in; add 0.010 in across parting line, and allow for parting line shift of 0.015 in.	63–125 µin rms, best ≈ 32 µin rms	0.060 in	All	4
Investment	Almost all	Fraction of an ounce to 150 lbs, up to 48 in.	± 0.003 in less than $\frac{1}{4}$; ± 0.004 in between $\frac{1}{4}$ to $\frac{1}{2}$ in; ± 0.005 in/in between $\frac{1}{2}$ -3 in; add ± 0.003 in/in above 3 in.	63–125 μin rms	0.030 in	>100	5
Centrifugal	Almost all	Ounce to 25,000 lbs. Depends on foundry capacity	Castings are usually rough machined by foundry.	Not applicable	¹ /4 in	All	1–3

Working with Copper Casting Alloys

VI. CASTING PROCESSES

Selecting the casting process is an important element in the design cycle, even though in some cases, it is a decision that can be left to the foundry. More often than not, the process to be used falls out logically from the product's size, shape and technical requirements. Among the more important factors that influence the choice of casting method are:

- · The number of castings to be made;
- · The size and/or weight of the casting;
- · The shape and intricacy of the product;
- The amount and quality of finish machining needed;
- The required surface finish;
- The prescribed level of internal soundness (pressure tightness) and/or the type and level of inspection to be performed;
- The permissible variation in dimensional accuracy for a single part, and part-to-part consistency through the production run; and,
- The casting characteristics of the copper alloy specified.

Other considerations, such as code requirements, can also play a role in selecting the casting process, but it is primarily the number and size of castings required, along with the alloy chosen, that determine how a casting will be made.

That is not to say that the designer has little choice; in fact, quite the opposite can be true. For example, small parts made in moderate to large quantities frequently lend themselves to several processes, in which case factors such as surface finish, soundness or mechanical properties will bear strongly on the choice of method used. These parameters are set by the designer.

It is convenient to classify the casting processes as being applicable either to general shapes of more or less any form or to specific and usually rather simple shapes. In addition, several new special processes have been commercialized in recent years, one of which is described below.

Processes for General Shapes

Sand Casting. Sand casting currently accounts for about 75% of U.S. copper alloy foundry production. The process is relatively inexpensive, acceptably precise and above all, highly versatile. It can be utilized for castings ranging in size from a few ounces to many tons. Further, it can be applied to simple shapes as well as castings of considerable complexity, and it can be used with all of the copper casting alloys.

Sand casting imposes few restrictions on product shape. The only significant exceptions are the draft angles that are always needed on flat surfaces oriented perpendicular to the parting line. Dimensional control and consistency in sand castings ranges from about ± 0.030 to ± 0.125 in (± 0.8 to 3.2 mm). Within this range, the more generous tolerances apply across the parting line. Surface finish ranges between approximately 300 and 500 µin (7.7 - 12.9 µm) rms. With proper choice of molding sands and careful foundry practice, surprisingly intricate details can be reproduced. There are a number of variations on the sand casting process.

In green sand casting—still the most widely used process—molds are formed in unbaked (green) sand, which is most often silica, SiO₂, bonded with water and a small amount of a clay to develop the required strength. The clay minerals (montmorillonite, kaolinite) absorb water and form a natural bonding system that holds the sand particles together. Various sands and clays may be blended to suit particular casting situations.

The mold is made by ramming prepared sand around a *pattern*, held in a *flask*. The patterns are withdrawn, leaving the *mold cavity* into which metal will be poured. Molds are made in two halves, an upper portion, the *cope*, and a lower portion, the *drag*. The boundary between cope and drag is known as the *parting line*.

Cores, made from sand bonded with resins and baked to give sufficient strength, may be supported within the mold cavity to form the internal structure of hollow castings. *Chills* of various designs may be embedded in the mold cavity wall to control the solidification process.

Risers are reservoirs of molten metal used to ensure that all regions of the casting are adequately fed until solidification is complete. Risers also act as heat sources and thereby help promote directional solidification. Molten metal is introduced into the mold cavity through a *sprue* and distributed through a system of *gates* and *runners*. **Figure VI-1a**, page 98, shows the sequence of steps used to make a typical sand casting. Note how the gates, runners and risers are situated to ensure complete and even filling of the mold. A series of sand cast valves are illustrated in Figure VI-1b.

Bench molding operations are performed by hand. Quality and part-topart consistency depend largely on the skill of the operator. The labor-intensive nature of bench molding usually restricts it to prototypes or short production runs. Patterns are another significant cost factor, especially if their cost cannot be amortized over a large number of castings. Still, bench molding remains the most economical method when only a few castings must be produced.

The machine molding method is automated and therefore faster than bench molding, but the casting process is essentially similar. Molding machines sling, ram, jolt or squeeze sand onto patterns, which in this case may consist of several parts arranged on a mold board. Dimensional control, surface finish and product consistency are better than those achievable with bench molding. Favorable costs can be realized from as few as several dozen castings. Machine-molded sand casting is therefore the most versatile process in terms of production volume.

Waterless molding aims to eliminate the sometimes detrimental effects of moisture in the molding sand. Clays are treated to react with oils rather than water to make them bond to the sand particles. The hot strength of the waterless-bonded sand is somewhat lower than that of conventional green sands. This reduces the force needed to displace the sand as the casting shrinks during solidification, which in turn reduces the potential for hot tearing. On the other hand, sands with low hot strength have a greater tendency to be damaged by hot metal flowing into the mold.1

For large castings, molds may be baked or partially dried to increase their strength. The surfaces of skin-dried molds are treated with organic binders, then dried by means of torches or heaters. To make dry sand molds, simple organic bonding agents such as molasses are dissolved in the bonding water when making up the green sand mixture. The entire mold is then baked to develop the desired hot strength. Besides hardening the mold, removing water also reduces the chance for blowholes and other moisture-related casting defects. Baking and skin drying are expensive operations and the dry sand methods are rapidly being replaced by a variety of *no-bake processes*, described below.

There are three general types of low-temperature-curing, chemical binders: *Cement* has traditionally been used as a bonding agent in the extremely large molds used to cast marine propellers and similar products. Cement bonded molds are extremely strong and durable, but they must be designed carefully since their inability to yield under solidification shrinkage stresses may cause hot tearing in the casting.

Organic binders utilize resins that cure by reaction with acidic catalysts. Furan-, phenolic-, and urethane-base systems are the most popular of the large variety of currently available bonding agents. Of the *inorganic* binders, the well-known liquid sodium silicate- CO_2 process is most widely used for copper alloy castings.

No Bake (Air Set). In this process, silica sand is mixed with a resin that hardens when exposed to the atmosphere. The process requires no water. It can be used for molds as well as cores. It is applicable to products as small as 20 lb (9 kg), although it is mainly used for large castings weighing up to 20,000 lb (9,100 kg). The no-bake process has become very popular in the past 10 years.

Shell Molding. Resin-bonded sand systems are also used in the shell molding process, in which prepared sand is contacted with a heated metal pattern to form a thin, rigid shell, Figure VI-2a, page 99. As in sand casting, two mating halves of the mold are made to form the mold cavity. Common shellmolding binders include phenolformaldehyde resins, furan or phenolic resins and baking oils similar to those used in cores. Non-baking resins (furans, phenolics, urethanes) are also available; these can claim lower energy costs because they do not require heated patterns.

The shell molding process is capable of producing quite precise castings and nearly rivals metal-mold and investment casting in its ability to reproduce fine details and maintain dimensional consistency, **Figure VI-2b.** Surface finish, at about 125 μ in (3.2 μ m) rms, is considerably better than that from green sand casting.

Shell molding is best suited to small-to-intermediate size castings. Relatively high pattern costs (pattern halves must be made from metal) favor long production runs. On the other hand, the fine surface finishes and good dimensional reproduceability can, in many instances, reduce the need for costly machining. While still practiced extensively, shell molding has declined somewhat in popularity, mostly because of its high energy costs compared with no-bake sand methods; however, shellmolded cores are still very widely used.

Plaster Molding. Copper alloys can also be cast in plaster molds to produce precision products of near-net shape. Plaster-molded castings are characterized by surface finishes as smooth as 32 μ in rms and dimensional tolerances as close as \pm 0.005 in (\pm 0.13 mm), and typically require only minimal finish machining. In some cases, rubber patterns can be used. These have the advantage of permitting re-entrant angles and zero-draft faces in the casting's design.

Gypsum plaster (CaSO₄) is normally mixed with refractory or fibrous compounds for strength and specific mechanical properties. The plaster must be made slightly porous to allow the escape of gases as the castings solidify. This can be achieved by *autoclaving* the plaster molds in steam, a technique known as the Antioch process. This produces very fine cast surfaces suitable for such precision products as tire molds, pump impellers, plaques and artwork. It is relatively costly.

Foaming agents produce similar effects at somewhat lower costs. Labor cost remains relatively high, however. Foamed plaster molds produce very fine surface finishes with good dimensional accuracy, but they are better suited to simple shapes. Most plaster mold castings are now made using the Copaco process, which utilizes conventional wood or metal patterns and gypsum-fibrous mineral molding compounds. The process is readily adapted to automation; with low unit costs, it is the preferred plastermold method for long production runs. On the whole, however, plaster molding accounts for a very small fraction of the castings market.

Refractory Molds. Of the several refractory-mold-based methods, the Shaw process is probably the best known. Here, the wood or metal pattern halves are dipped into an aggregate slurry containing a methyl silicate binder, forming a shell. After stripping the pattern, the shell is fired at a high temperature to produce a strong refractory mold. Metal is introduced into the mold while it is still hot. This aids feeding but it also produces the relatively slow cooling rates and coarse-grained structures that are typical of the process.

Dimensional accuracy as good as ± 0.003 in (± 0.08 mm) is attainable in castings smaller than about one inch (25 mm), while tolerances as close as ± 0.045 in (± 1.1 mm) are claimed in castings larger than 15 in (630 mm) in cross section. Additional allowances of about 0.010-0.020 in (0.25-0.5 mm) must be included across the parting line. Surface finishes are typically better than 80 µin (2 µm) rms in nonferrous castings.

Very fine surface finishes and excellent reproduction of detail are characteristic of the *investment* casting, or lost wax process. The process was practiced by several ancient cultures and has survived virtually without modification for the production of artwork, statuary and fine jewelry. Today, the process's most important commercial application is in the casting of complex, net shape precision industrial products such as impellers and gas turbine blades.

The process first requires the manufacture of an intricate metal die with a cavity in the shape of the finished product (or parts of it, if the product is to be assembled from several castings). Special wax, plastic or a lowmelting alloy is cast into the die, then removed and carefully finished using heated tools. Clusters of wax patterns are dipped into a refractory/plaster slurry, which is allowed to harden as a shell or as a monolithic mold.

The mold is first heated to melt the wax (or volatilize the plastic), then fired at a high temperature to vitrify the refractory. Metal is introduced into the mold cavity and allowed to cool at a controlled rate. The sequence of steps involved in the investment method are illustrated in **Figure VI-3a**, page 100.

Investment casting is capable of maintaining very high dimensional accuracy in small castings, although tolerances increase somewhat with casting size. Dimensional consistency ranks about average among the casting methods; however, surface finishes can be as fine as $60 \ \mu in (1.5 \ \mu m)$ rms, and the process is unsurpassed in its ability to reproduce intricate detail.

Investment casting is better suited to castings under 100 lbs (45 kg) in weight. Because of its relatively high tooling costs and higher than average total costs, the process is normally reserved for relatively large production runs of precision products, and is not often applied to copper alloys.

Metal-Mold Processes. Reusable or metal-mold processes are used more extensively for copper alloys in Europe and England than in North America; however, they are gaining recognition here as equipment and technology become increasingly available. Permanent mold casting in North America is identified as gravity die casting or simply die casting in Europe and the U.K. The process called die casting in North America is known as pressure die casting abroad.

Permanent mold casting utilizes a metallic mold. The mold is constructed such that it can be opened along a conveniently located parting line. Hot metal is poured through a sprue to a system of gates arranged so as to provide even, low-turbulence flow to all parts of the cavity. Baked sand cores can be provided just as they would be with conventional sand castings. Chills are unnecessary since the metal mold provides very good heat transfer. The nature of the process necessitates adequate draft angles along planar surfaces oriented perpendicular to the parting line. Traces of the parting line may be visible in the finished casting and there may be some adherent flashing, but both are easily removed during finishing.

Permanent mold castings are characterized by good part-to-part dimensional consistency and very good surface finishes (about 70 µin, 1.8 µm). Any traces of metal flow lines on the casting surface are cosmetic rather than functional defects. Permanent mold castings exhibit good soundness. There may be some microshrinkage, but mechanical properties are favorably influenced by the castings' characteristically fine grain size. The ability to reproduce intricate detail is only moderate, however, and for products in which very high dimensional accuracy is required, plaster mold or investment processes should be considered instead.

Permanent mold casting is more suitable for simple shapes in mid-size castings than it is for very small or very large products. Die costs are relatively high, but the absence of molding costs makes the overall cost of the process quite favorable for medium to large production volumes. **Figures VI-4b** and **VI-4c**, page 101,shows typical permanentmold castings.

Die casting involves the injection of liquid metal into a multipart die under high pressure. Pneumatically actuated dies make the process almost completely automated. Die casting is best known for its ability to produce high quality products at very low unit costs. Very high production rates offset the cost of the complex heat-resisting tooling required; and with low labor costs, overall casting costs are quite attractive.

The process can be used with several copper alloys, including yellow brass, C85800, manganese bronzes, C86200 and C86500, silicon brass, C87800, the special die casting alloys C99700 and C99750, plus a few proprietary compositions. These alloys can be die cast because they exhibit narrow freezing ranges and high beta phase contents. Rapid freezing is needed to complement the process's fast cycle times. Rapid freezing also avoids the hot shortness associated with prolonged mushy solidification. Beta phase contributes the hot ductility needed to avoid hot cracking as the casting shrinks in the unyielding metal mold.

Highly intricate copper alloy products can be made by die casting (investment casting is even better in this regard). Dimensional accuracy and partto-part consistency are unsurpassed in both small (<1 in, 25 mm) and large castings. The attainable surface finish, often as good as 30 μ in (0.76 μ m) rms, is better than with any other casting process. Die casting is ideally suited to the mass production of small parts. The process is illustrated in **Figure VI-5a**, page 102.

Extremely rapid cooling rates (dies are normally water cooled) results in very fine grain sizes and good mechanical properties. Leaded alloys C85800 and C99750 can yield castings that are pressure tight, although lead is incorporated in these alloys more for its favorable effect on machinability than for its ability to seal porosity. **Figure VI-5b** shows a selection of die cast products.

Processes for Specific Shapes

Continuous Casting. Picture a mold cavity whose graphite or watercooled metal side walls are fixed, while the bottom wall, also cooled, is free to move in the axial direction as molten metal is poured in from the top, Figure VI-6a, page 103. This is the continuous casting process. It is used to produce bearing blanks and other long castings with uniform cross sections. Continuous casting is the principal method used for the large-tonnage production of semifinished products such as cast rods, tube rounds, gear and bearing blanks, slabs and custom shapes.

The extremely high cooling and solidification rates attending continuous casting can, depending on the alloy, produce columnar grains. The continuous supply of molten metal at the solidification interface effectively eliminates microshrinkage and produces high quality, sound products with very good mechanical properties. With its simple die construction, relatively low equipment cost, high production rate and low labor requirements, continuous casting is a very economical production method.

Centrifugal Casting. This casting process has been known for several hundred years, but its evolution into a sophisticated production method for other than simple shapes has taken place only in this century. Today, very high quality castings of considerable complexity are produced using this technique.

To make a centrifugal casting, molten metal is poured into a spinning mold. The mold may be oriented horizontally or vertically, depending on the casting's aspect ratio. Short, squat products are cast vertically while long tubular shapes are cast horizontally. In either case, centrifugal force holds the molten metal against the mold wall until it solidifies. Carefully weighed charges insure that just enough metal freezes in the mold to yield the desired wall thickness, Figure VI-7a, page 103. In some cases, dissimilar alloys can be cast sequentially to produce a composite structure. Figure VI-7b shows a section of a four-inch (100-mm) thick vessel shell consisting of a pure copper outer ring surrounding a nickelaluminum bronze liner.

Molds for copper alloy castings are usually made from carbon steel coated with a suitable refractory mold wash. Molds can be costly if ordered to custom dimensions, but the larger centrifugal foundries maintain sizeable stocks of molds in diameters ranging from a few inches to several feet.

The inherent quality of centrifugal castings is based on the fact that most nonmetallic impurities in castings are less dense than the metal itself. Centrifugal force causes impurities (dross, oxides) to concentrate at the casting's inner surface. This is usually machined away, leaving only clean metal in the finished product. Because freezing is rapid and completely directional, centrifugal castings are inherently sound and pressure tight. Mechanical properties can be somewhat higher than those of statically cast products.

Centrifugal castings are made in sizes ranging from approximately 2 in to 12 ft (50 mm to 3.7 m) in diameter and from a few inches to many yards in length. Size limitations, if any, are likely as not based on the foundry's melt shop capacity. Simple-shaped centrifugal castings are used for items such as pipe flanges and valve components, while complex shapes can be cast by using cores and shaped molds, **Figure VI-7c**. Pressure-retaining centrifugal castings have been found to be mechanically equivalent to more costly forgings and extrusions.

In a related process called centrifuging, numerous small molds are arranged radially on a casting machine with their feed sprues oriented toward the machine's axis. Molten metal is fed to the spinning mold, filling the individual cavities. The process is used for small castings such as jewelry and dental bridgework, and is economically viable for both small and large production quantities. Several molding methods can be adapted to the process, and the unit costs of centrifuged castings will depend largely on the type of mold used.

Special Casting Processes

Recent years have seen the introduction of a number of new casting processes, often aimed at specific applications. While these techniques are still to some extent under development and while they are certainly not available at all job shop foundries, their inherent advantages make them valuable additions to the designer's list of options.

Squeeze Casting. This interesting process aims to improve product quality by solidifying the casting under a metallostatic pressure head sufficient to (a) prevent the formation of shrinkage defects and (b) retain dissolved gases in solution until freezing is complete. This method was originally developed in Russia and has undergone considerable improvement in the U.S. It is carried out in metal molds resembling the punch and die sets used in sheetmetal forming. After introducing a carefully metered charge of molten metal, the upper die assembly is lowered into place, forming a tight seal. The "punch" portion of the upper die is then forced into the cavity, displacing the molten metal under pressure until it fills the annular space between the die halves.

Proponents of squeeze casting claim that it produces very low gas entrapment and that castings exhibit shrinkage volumes approximately onehalf those seen in sand castings. Very high production rates, comparable to die casting but with considerably lower die costs, are also claimed.

The process produces the high quality surfaces typical of metal mold

casting, with good reproduction of detail. Rapid solidification results in a fine grain size, which in turn improves mechanical properties. It is claimed that squeeze casting can be applied to many of the copper alloys, although die and permanent mold casting alloys should be favored.

Selecting a Casting Process

A product's shape, size and physical characteristics often limit the choice of casting method to a single casting process, in which case the task simply becomes one of selecting a reliable foundry offering a fair price. If there is a choice of casting methods, it may be worthwhile to consult a trusted foundry, since the foundryman's experience can be a source of cost-saving ideas. In any event, it is advantageous to limit selection of the casting method to a few choices early in the design process so that the design and the casting method meet each other's requirements.

Making the selection is not inherently difficult, although it should be emphasized that the help of a skilled foundryman can be invaluable at this point. The factors listed at the beginning of this chapter determine the best suited and most economical process. **Table 20**, page 91, adapted from several sources,^{3,21} defines the broad limits on process-selection parameters.

FIGURE VI-1b

Sand casting lends itself to a large range of product sizes. It is the most versatile casting process.

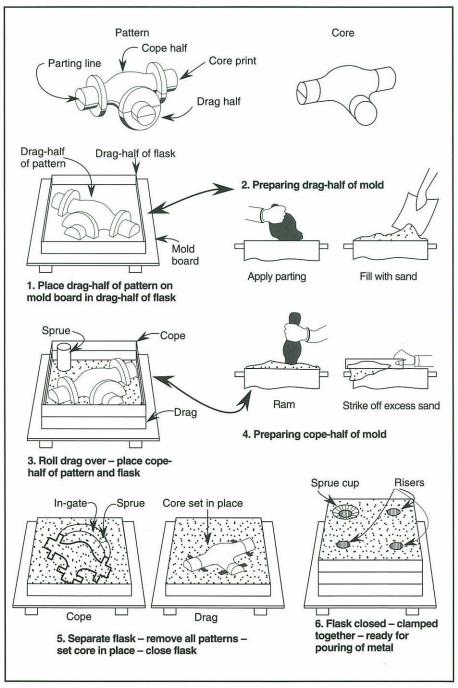


FIGURE VI-1a Making a mold for sand casting.

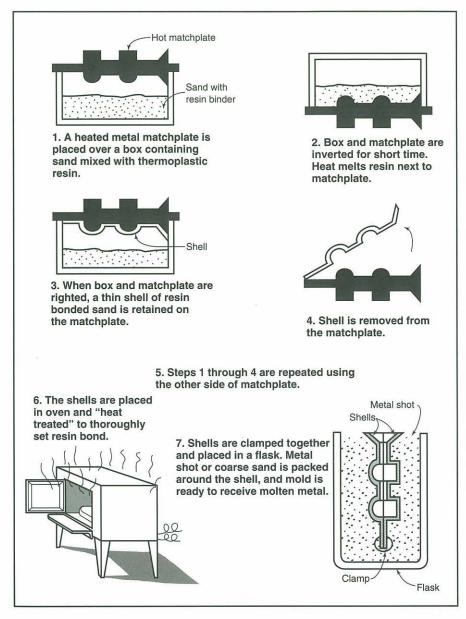
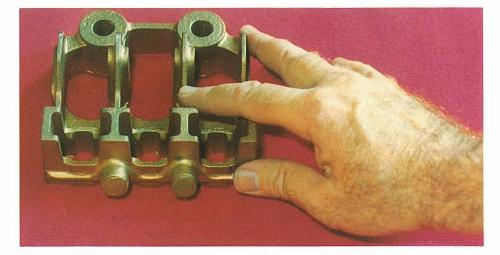
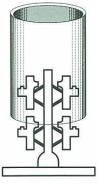



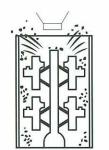
FIGURE VI-2a Shell molding process

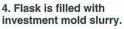

FIGURE VI-2b

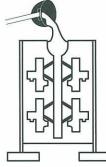
Shell molding is capable of producing precise castings. Surface finishes exceed those of sand castings.

1. Wax or plaster is injected into die to make a pattern.

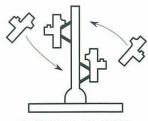
INVESTMENT FLASK CASTING




3. A metal flask is placed around the pattern cluster.



5. After mold material has set and dried, patterns are melted out of mold.



7. Mold material is broken away from castings.

6. Hot molds are filled with metal by gravity, pressure vacuum or centrifugal force.

2. Patterns are gated to a central sprue.

INVESTMENT SHELL CASTING

3. Pattern clusters are dipped in ceramic slurry.

5. After mold material has set and dried, patterns are melted out of mold.

4. Refractory grain is sifted onto coated patterns, steps 3 and 4 are repeated several times to obtain desired shell thickness.

6. Hot molds are filled with metal by gravity,pressure vacuum or centrifugal force.

7. Mold material is broken away from castings.

8. Castings are removed from sprue, and gate stubs ground off.

TO SHIPPING

FIGURE VI-3a Investment casting processes

FIGURES VI-3b A selection of investment castings. Note the exceptional surface finish and fine detail.

FIGURES VI-4b,c

Typical permanent mold castings. The process is also called gravity die casting.

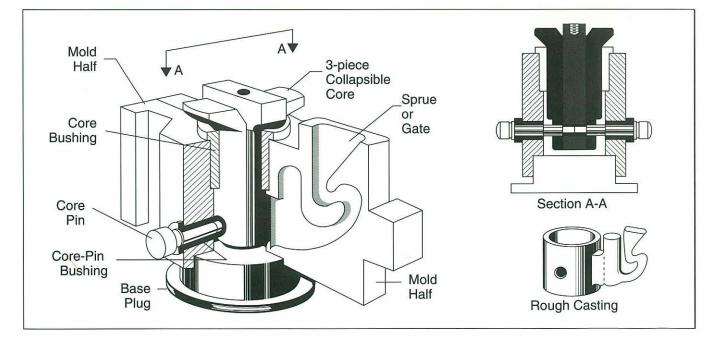
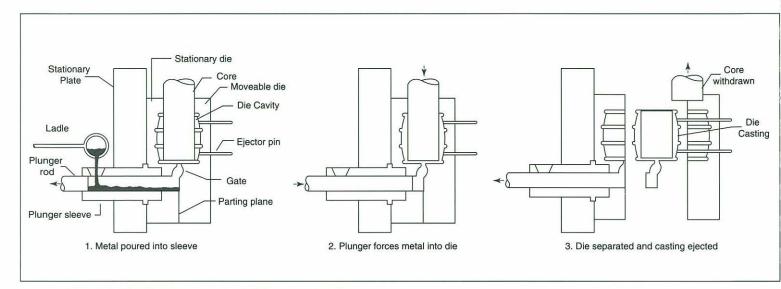
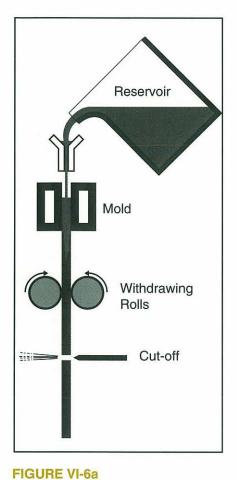


FIGURE VI-4a Permanent mold casting process

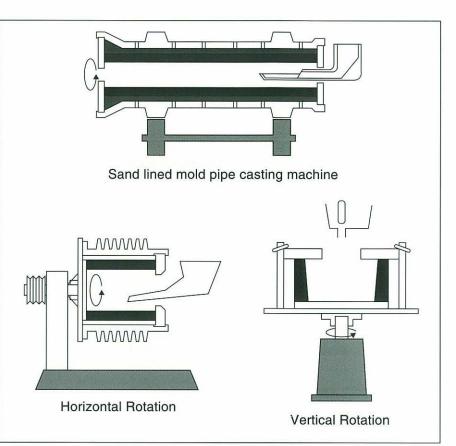

FIGURE VI-5a Die casting process

FIGURE VI-5b Die cast brass products. Note the fine surface finish and good reproduction of detail.

Continuous casting process

FIGURE VI-7a Centrifugal casting processes

FIGURE VI-6b A selection of continuous cast products in cross section. This process is commonly used to produce such products as gear blanks and sleeve bearing pre-forms. **FIGURE VI-7b** A composite centrifugal casting; the outer shell is pure copper while the inner liner is nickel-aluminum bronze.

FIGURE VI-7c Centrifugally cast hub for a variable pitch naval propeller. Note the extensive use of cores to form the complex shape.

VII. CASTING DESIGN PRINCIPLES

The many factors involved in proper casting design are discussed in a number of excellent texts, including those published by the Non-Ferrous Founders' Society and the American Foundrymen's Association.1-3 This guide cannot deal with casting design in the degree of detail to which those publications are devoted, but it may be helpful to point out a few of the general principles that govern the manufacture of quality castings. It must be emphasized that successful casting design is a cooperative process involving all the parties involved. The advice of a skilled foundryman and patternmaker is invaluable, and the earlier in the design process such consultation is sought, the better.

The most important point to bear in mind when designing a casting is that the design doesn't simply set the shape of the product, it also determines the way that the casting will solidify—to the extent this is independent of foundry practice. It may be helpful to review the material presented earlier on the freezing behavior of the various copper alloys.

Short-freezing alloys, such as pure copper, high copper alloys and yellow brasses, aluminum bronzes and copper-nickels solidify from the mold walls inward and tend to form shrinkage cavities in regions where the last remaining liquid metal solidifies, **Figure VII-1**, page 106.

Long-freezing alloys, such as tin bronzes, leaded alloys and the red and semi-red brasses solidify by going through a mushy stage more or less uniformly throughout the casting's volume. They tend to form internal porosity, as shown in **Figure VII-2**, page 106; this cannot always be avoided, but it can often be tolerated.

There is a spectrum of freezing behaviors between the short- and longfreezing alloys. Exactly how a casting solidifies depends on alloy composition, casting shape, pouring temperature and the rate of heat extraction. For both short- and long-freezing alloys, however, it is important to ensure that the metal freezes in a directional manner such that the last metal to solidify within the mold cavity (not including the metal left in risers) is adequately fed by liquid metal until solidification is complete. No partially liquid region of the casting should be shut off from a supply of molten metal. Hot spots should be avoided since these tend to remain liquid longest.

The simplest way to ensure proper solidification is by the placement of risers. These reservoirs of liquid metal are placed either where they can feed relatively thin sections that might otherwise freeze off and isolate adjacent regions of the casting or where they can, with their high sensible heat, help bring about directional solidification.

Risers must be large enough to remain liquid well after the casting has solidified. Risers are more important in the casting of short-freezing alloys, where feeding takes place over considerable distances. In' long-freezing alloys, risers are less helpful in promoting directional solidification and are used instead to ensure uniform solidification rates. The design and placement of risers is beyond the scope of this alloy selection guide, but the designer should recognize their importance. Since the need for risers may affect the shape or layout of a casting, it is best to consult with the foundryman about riser placement before committing to a final configuration.

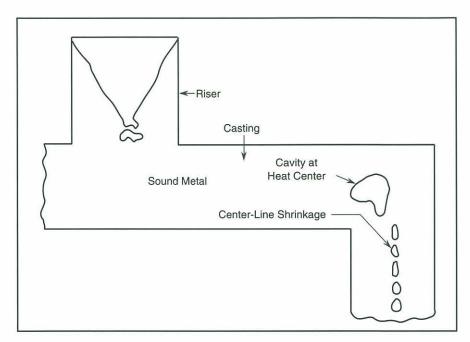
It is also important to take into consideration the shrinkage stresses a casting may be subjected to as it solidifies. The ability of a casting to resist such stresses without cracking depends on the alloy's structure, solidification behavior and elevatedtemperature properties. The presence of a second phase, particularly beta, tends to improve strength and ductility at high temperatures, and this reduces the tendency for restrained sections to tear as the metal solidifies and shrinks. The type of molding material is also important. Properly made sand molds can accommodate shrinkage, while permanent or plaster molds cannot.

As an example of the interplay between metal and molding material in the choice of a casting process, consider the alpha-beta structure of yellow brasses. The alloys' good high temperature ductility, along with their relatively short freezing range, suit them to the permanent mold and die casting processes.

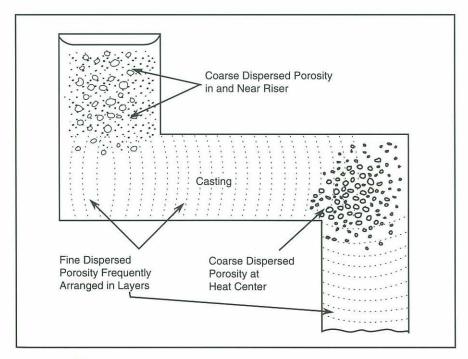
Design Fundamentals

Observing a few simple rules will go a long way toward avoiding the most prevalent design-based casting defects. It should become apparent that these rules are based on the solidification behaviors described above. $^{I,\ 22}$

- Avoid abrupt changes in section thickness. Taper the larger section such that it blends into the thinner section, Figure VII-3, page 107.
- Always avoid sharp internal corners. Use generous fillets and rounded corners wherever possible to avoid the formation of hot spots.
- Minimize the use of L intersections, avoid X intersections, and take care in designing T intersections. Use rounded corners insofar as possible, and substitute two Ts for each X intersec-

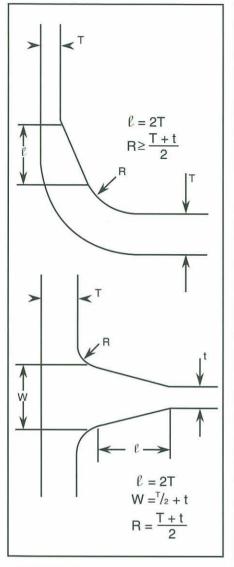

tion wherever possible, **Figure VII-4**, page 107.

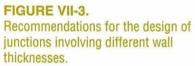
- Visualize how the metal will solidify, and design the casting to take this into account. Consider the type of freezing the candidate alloy will undergo and use this understanding to avoid shrinkage cavities or porosity.
- Identify the constraints the solidifying and cooling casting will undergo, and formulate the design accordingly to avoid hot tearing.
- Do not hesitate to add metal (padding) to facilitate the feeding of


thin sections and remove metal where it creates an abrupt change in section size. Removing metal may, in fact, strengthen the casting.

• If there is a possibility that shrinkage stresses will demand some degree of flexibility during solidification, use curved members in place of straight sections whenever possible.

Following these guidelines will help ensure that the casting design process will begin correctly, and that the need for changes later on—when they may be more expensive—will be minimized.




FIGURE VII-1. Formation of shrinkage cavities for alloys that solidify by skin formation.

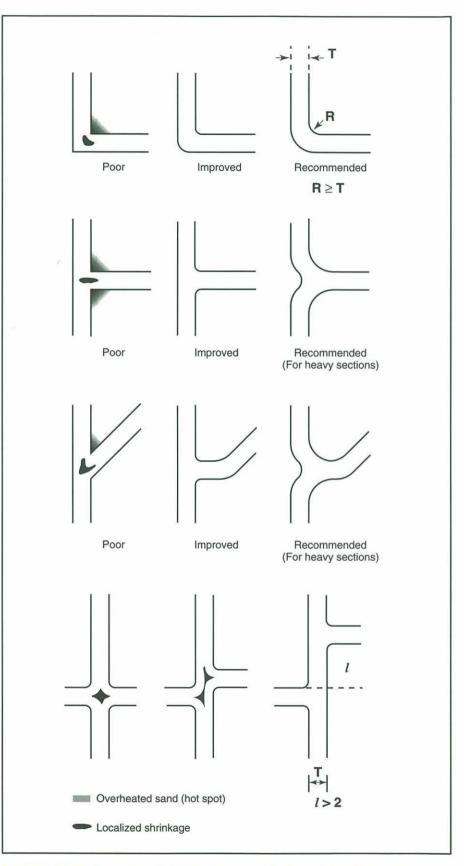


FIGURE VII-2.

Formation of internal porosity for alloys that solidify over long freezing ranges.

Specifying and Buying Copper Casting Alloys

VIII. ORDERING A COPPER ALLOY CASTING

In order to increase the likelihood that a successful casting will result, the buyer must give proper attention to design principles, alloy selection and/or specification, the choice of casting method and the type and rigor of inspection procedures. This is especially true when the foundry is an independent job shop, where communication among designer, metallurgist and foundryman may not be so close as it might be in an in-house or captive operation.

The following ordering guidelines are based on practices recommended by the Non-Ferrous Founders' Society. Some may seem like minor, unimportant points; these are exactly the kind that have a way of becoming very significant when ignored:³

- Alloy Selection. Identify the alloy unambiguously. This normally involves nothing more than specifying the appropriate UNS designation. Conforming specifications should be cited, where applicable, and special compositional requirements may be added, if needed. Heat treatment and/or annealing conditions should be spelled out. Avoid ordering alloys by common names, as these can be inexact, and that can lead to disagreement. Also, common or descriptive names usually don't satisfy quality assurance requirements.
- Casting Design. Describe the casting's design using appropriate drawings for the product, pattern and mold layout. Ideally, drawings will represent a consensus arrived at among the designer, metallurgist, patternmaker and foundryman. All parties involved should accept the

design package before production begins.

- **Patterns.** Patterns may be supplied by either the customer or the foundry. Whatever the arrangement, the foundry should be consulted regarding the type, material, layout and coring requirements for the patterns involved.
- Molding Method. The molding method used will generally be based on either the product's quality requirements, the type of alloy and/or the number of castings to be produced. Any special requirements or limitations of the casting method should be carefully addressed by the designer—and understood by both designer and foundryman—before committing the job to production.
- Inspection Requirements. Quality control requirements are usually spelled out or given as options in conforming specifications, and the designer/customer need only refer to these documents to determine what may be reasonably expected of the foundry. Where conforming specifications are not called out, it becomes very important that all quality requirements are thoroughly agreed upon before any metal is poured.

Typical requirements include chemical composition, mechanical properties tests on concurrently cast test bars, radiography and/or other non-destructive examination. Performance qualifications such as pressure tests can also be called for in the case of large production runs or new designs involving safety-related products.

Prototype Production.

Unfortunately, many casting mistakes do not become evident until the product has been cast, cleaned, machined and inspected, i.e., until all of the value has been added. It is therefore common practice to make a few trial runs, particularly for complex castings with extensive coring. Costs are involved, but they can be offset in part by reclaiming the metal.

Assuming the metal composition is correct, failed prototype castings make ideal corrosion test specimens. It is far less costly to modify the design, change the foundry practice or tweak the alloy composition than it is to repair or reject an entire production lot of faulty products.

Page 110 contains a sample request for quotation for a typical copper alloy sand casting. The sample product described illustrates many of the fundamental requirements of a wellwritten RFQ.

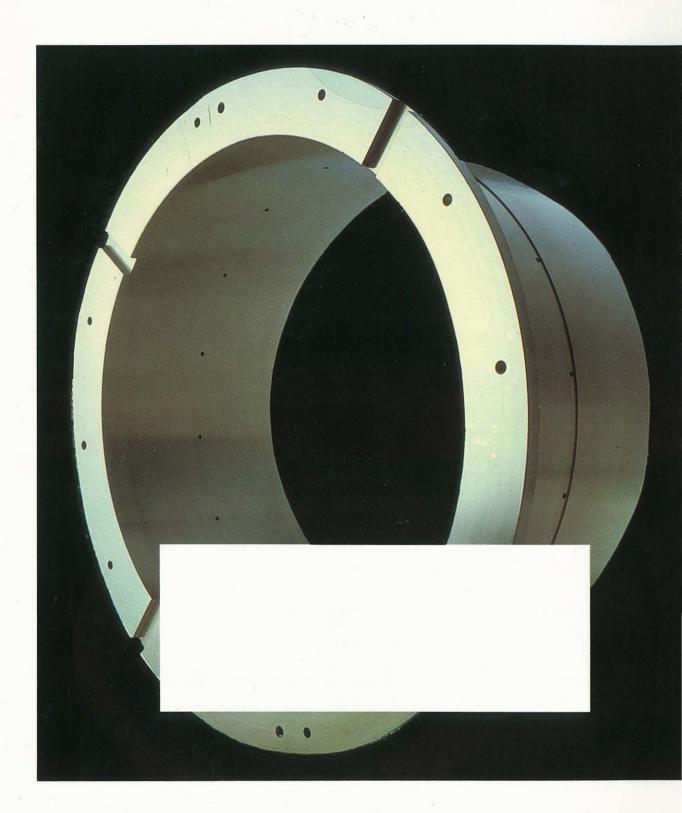
If proper consideration is given to the quotation request, in most instances the actual purchase order will mirror the RFQ and may in fact be drawn directly from the quotation request form. However, should any changes be made between the RFQ and the actual purchase order, these should be specifically called to the foundry's attention, as it is possible that they may affect the price quoted.

Customers can obtain useful information on specific foundry capabilities from a number of reliable sources. This publication, along with CDA's Copper Select software can provide information on which copper alloys may be best for various customer applications. Foundry associations such as the Non-Ferrous Founders' Society (NFFS) routinely publish membership directories or buyers' guides.

A computer disk directory is available from NFFS to help casting buyers select the correct foundry to fill their casting needs. This program contains basic information on foundries, such as their phone and fax numbers, key personnel, distinctive alloys, production capacities and number of employees. It also indexes foundries geographically, by industries served. More specifically, the system allows the user to combine several of these parameters into a single search to locate those foundries that are ideally suited to supply their casting needs and to automatically generate quotation requests for the foundries selected.

Additional information on the Copper Select program is available from CDA at 800-CDA-DATA. Both the traditional printed version and the computer version of the North American Directory of Non-Ferrous Foundries can be ordered from NFFS by calling 708-299-0950.

Please quote your be	Street	rein.
120 Roosevelt Ridge Park, IL Phone: 708/555 Please quote your be Please base your quo Drawing or Part Number: \$330-8406 Specification: MIL-B-24480	Street 60640 6/0515 — FAX 708/555-0512 est price for the articles described he	rein.
Ridge Park, IL Phone: 708/555 Please quote your be Please base your quo Drawing or Part Number: \$330-8406 Specification: MIL-B-24480	s 60640 6/0515 — FAX 708/555-0512 est price for the articles described he	rein.
Phone: 708/555 Please quote your be Please base your quo Drawing or Part Number: \$330-8406 Specification: MIL-B-24480	st price for the articles described he	rein.
Please quote your be Please base your quo Drawing or Part Number: \$330-8406 Specification: MIL-B-24480	est price for the articles described he	rein.
Please base your quo Drawing or Part Number: \$330-8406 Specification: MIL-B-24480		
Drawing or Part Number: \$330-8406 Specification: MIL-B-24480	ote on the terms and conditions spec	ified.
Specification: MIL-B-24480		
Material/Commercial Designation: ITMC COEQO		
Waterial/Commercial Designation. 0NS C9580	10	
THIS IS NOT AN ORDER		
Pattern Description:		
1 split pattern mounted on	36×50 boards; 5 wood co	preboxes.
Surface Finish:		
500 µin rms		3
Non-Destructive Test Requirements:	b Cat I	
to MIL-STD 278E, Cat. 2-Su Documentation (Reports) Required:	D. Cat. J	
Yes		
Other Requirements:		
Pressure test to 125 psi u	nder water.	
Actual 🗌 or Estimated 🗵 Casting Weight: 125		
Quote Required Tooling: 🗵 Separately	Included	
Quote Quantities: 5, 10, 50	mended	
Anticipated Annual Use: 100 pieces		
Anticipated Pattern Life: 10 years		
Expected Order Quantity/Frequency: 10/mont	h	
Required Turn-Around: 4-6 weeks after		proved
Additional information that may be required to p noted below.		


REFERENCES

- American Foundrymen's Society, *Casting Copper-Base Alloys*, AFS, Des Plaines, IL, 1984.
- American Foundrymen's Society, *Copper-Base Alloys: Foundry Practices*, 2nd ed., AFS, Chicago, IL, 1952.
- Flinn, R.A., Copper, Brass and Bronze Castings: Their Structures, Properties & Applications, Non-Ferrous Founders' Society, Cleveland, OH, 1963.
- American Society for Metals, Source Book on Copper and Copper Alloys, Metals Park, OH, 1979.
- ASM International, Properties of Cast Copper Alloys, Rev. by Arthur Cohen, Copper Development Association Inc., Materials Park, OH, 1990.
- Copper Development Association Inc., Cast Bronze Bearings — Alloy Selection and Bearing Design, New York, 1993.
- 7. American Society for Testing and Materials, *B* 601 Standard Practice for Temper Designations for Copper and Copper Alloys—Wrought and Cast, Philadelphia, 1992.
- Copper Development Association (UK), Copper Alloy Castings Properties and Applications, CDA Publication TN42, Potters Bar, Herts., 1991.

- Tracy, A.W., "Effect of Natural Atmospherics on Copper Alloys: 20-Year Test," Symp. on Atmospheric Corrosion on Non-Ferrous Metals, ASTM STP 175, Philadelphia, 67-76 (1956).
- Popplewell, J.M. and T.C. Gearing, *Corrosion*, 31, 279 (1975).
- 11. Thompson, D.H., Mater. Res. & Stds., **1**, 108 (1961).
- Thompson, D.H. and A.W. Tracy, "Influence of Composition on the Stress-Corrosion Cracking of Some Copper-Base Alloys," *Metals Transactions*, 100 (Feb. 1949).
- Gilbert, P.T., "Copper and Copper Alloys," Chapter 4.2 in *Corrosion*, *Vol. 1, Metal/Environment Reactions*, L.L. Sheir, Ed., Newnes-Butterworths, Boston, 1977.
- Cohen, A. and L. Rice Copper and its Alloys for Desalting Plants, Copper Development Association Inc., New York, 1975.
- Klement, J.F., R.E. Maersch and P.A. Tully, "Use of Alloy Additions to Prevent Intergranular Stress Corrosion Cracking in Aluminum Bronze," *Corrosion*, 16, 127 (1960).
- 16. Thornton, C.H., S. Harper and J.E. Bowers, A Critical Survey of Available High Temperature Mechanical Property Data for

Copper and Copper Alloys, International Copper Research Association,Ltd December, 1983.

- Peterson, R.A., "Bronze sleeve bearings," 1977/1978 Power Transmission Design Handbook, Penton/IPC, 1976.
- Booser, R., "Selecting Sleeve Bearing Materials," *Matls. Des. Eng.*, 119 (Oct. 1958).
- Bolz, R.E. and G.L. Tuve, Eds., Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, 1973.
- Copper Development Association Inc., Standards Handbook: Cast Products, Alloy Data/7, Greenwich, CT, 1978.
- American Welding Society/Copper Development Association Inc., *Copper and Copper Alloys: Welding, Soldering, Brazing, Surfacing,* (Reprinted from the AWS Welding Handbook).
- 22. Glaser-Miller Co., *Casting Technique Comparisons*, Corporate technical brochure.
- Ruddle, R.W., "Design Castings for Strength," SME Paper No. M75-405, as cited in **Reference 1**, p. 139.

Non-Ferrous Founders' Society 7014-0009

